1,779 research outputs found

    Reinforcement of wood with natural fibers

    Get PDF
    This paper describes an experimental programme which examines the reinforcement in flexure of timber beams with composite materials based on natural fibers in the form of fabrics made from hemp, flax, basalt and bamboo fibers. The industrial use of natural fibers has been continuously increasing since 1990s due to their advantages in terms of production costs, pollution emissions and energy consumption for production and disposal. The technique allows the reinforcement of the intrados of beams, avoiding the dismantling of the overlying part of the structure with significant savings in terms of costs and work time. The test program consists of three phases incorporating 45 beams. The bending tests on the wooden elements made it possible to measure the increase in capacity and stiffness resulting from the composite reinforcement. This was applied to beams, creating different arrangements and using different quantities (number of layers). Despite the diversity of the various tests carried out, the results obtained in some cases showed significant increases in terms of load-carrying capacity and in deflection ductility

    Federated learning for performance prediction in multi-operator environments

    Get PDF
    Telecom vendors and operators deliver services with strict requirements on performance, over complex and sometimes partly shared network infrastructures. A key enabler for network and service management in such environments is knowledge sharing, and the use of data-driven models for performance prediction, forecasting, and troubleshooting. In this paper, we outline a multi-operator service metrics prediction framework using federated learning that allows privacy-preserved knowledge-sharing across operators for improved model performance, and also reduced requirements on data transfer within an operator network. Federated learning is compared against local and central learning strategies for multi-operator performance prediction, and it is shown to balance the requirements on data privacy, model performance, and the network overhead. Further, the paper provides insights on how data heterogeneity affects model performance, where the conclusion is that standard federated learning has certain robustness to data heterogeneity. Finally, we discuss the challenges related to training a federated learning model with a limited budget on the communication rounds. The evaluation is performed using a set of realistic publicly available data traces, that are adapted specifically for the purpose of studying multi-operator service performance prediction

    Optically guided linear Mach Zehnder atom interferometer

    Full text link
    We demonstrate a horizontal, linearly guided Mach Zehnder atom interferometer in an optical waveguide. Intended as a proof-of-principle experiment, the interferometer utilises a Bose-Einstein condensate in the magnetically insensitive |F=1,mF=0> state of Rubidium-87 as an acceleration sensitive test mass. We achieve a modest sensitivity to acceleration of da = 7x10^-4 m/s^2. Our fringe visibility is as high as 38% in this optically guided atom interferometer. We observe a time-of-flight in the waveguide of over half a second, demonstrating the utility of our optical guide for future sensors.Comment: 6 pages, 3 figures. Submitted to Phys. Rev.

    Structural and magnetic dimers in the spin-gapped system CuTe2O5

    Full text link
    We investigated the magnetic properties of the system CuTe2O5 by susceptibility and electron spin resonance measurements. The anisotropy of the effective g-factors and the ESR linewidth indicates that the anticipated structural dimer does not correspond to the singlet-forming magnetic dimer. Moreover, the spin susceptibility of CuTe2O5 can only be described by taking into account interdimer interactions of the same order of magnitude than the intradimer coupling. Analyzing the exchange couplings in the system we identify the strongest magnetic coupling between two Cu ions to be mediated by super-super exchange interaction via a bridging Te ligand, while the superexchange coupling between the Cu ions of the structural dimer only results in the second strongest coupling

    Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years

    Get PDF
    Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated

    Reconstruction of 2D Al Ti on TiB in an aluminium melt

    Get PDF
    It has been widely considered that Al Ti is involved in the aluminium nucleation on TiB , although the mechanism has not been fully understood. In this paper molecular dynamics has been conducted to investigate this phenomenon at an atomistic scale. It was found that a two-dimensional Al Ti layer may remain on TiB above the aluminium liquidus. In addition, the results showed that this 2D Al Ti undergoes interface reconstruction by forming a triangular pattern. This triangular pattern consists of different alternative stacking sequences. The transition region between the triangles forms an area of strain concentration. By means of this mechanism, this interfacial Al Ti layer stabilizes itself by localizing the large misfit strain between TiB and Al Ti This reconstruction is similar to the hdp-fcc interface reconstruction in other systems which has been observed experimentally.EPSR

    Attosecond pulse trains generated using two color laser fields

    Get PDF
    We investigate the spectral and temporal structure of high harmonic emission from argon exposed to an infrared laser field and its second harmonic. For a wide range of generating conditions, trains of attosecond pulses with only one pulse per infrared cycle are generated. The synchronization necessary for producing such trains ensures that they have a stable pulse-to-pulse carrier envelope phase, unlike trains generated from one color fields, which have two pulses per cycle and a π phase shift between consecutive pulses. Our experiment extends the generation of phase stabilized few cycle pulses to the extreme ultraviolet regime. © 2006 The American Physical Society

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    Precision atomic gravimeter based on Bragg diffraction

    Get PDF
    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g=2.7×10−9\Delta g/g = 2.7\times10^{-9} with an integration time of 1000s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure
    • …
    corecore