140 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides

    Full text link
    This chapter discusses contemporary quantum chemical methods and provides general insights into modern electronic structure theory with a focus on heavy-element-containing compounds. We first give a short overview of relativistic Hamiltonians that are frequently applied to account for relativistic effects. Then, we scrutinize various quantum chemistry methods that approximate the NN-electron wave function. In this respect, we will review the most popular single- and multi-reference approaches that have been developed to model the multi-reference nature of heavy element compounds and their ground- and excited-state electronic structures. Specifically, we introduce various flavors of post-Hartree--Fock methods and optimization schemes like the complete active space self-consistent field method, the configuration interaction approach, the Fock-space coupled cluster model, the pair-coupled cluster doubles ansatz, also known as the antisymmetric product of 1 reference orbital geminal, and the density matrix renormalization group algorithm. Furthermore, we will illustrate how concepts of quantum information theory provide us with a qualitative understanding of complex electronic structures using the picture of interacting orbitals. While modern quantum chemistry facilitates a quantitative description of atoms and molecules as well as their properties, concepts of quantum information theory offer new strategies for a qualitative interpretation that can shed new light onto the chemistry of complex molecular compounds.Comment: 43 pages, 3 figures, Version of Recor

    Joy leads to overconfidence, and a simple countermeasure

    Get PDF
    Overconfidence has been identified as a source of suboptimal decision making in many real-life domains, with often far-reaching consequences. This study identifies a mechanism that can cause overconfidence and demonstrates a simple, effective countermeasure in an incentive-compatible experimental study. We observed that joy induced overconfidence if the reason for joy (an unexpected gift) was u

    Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

    Get PDF
    Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules..The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene

    Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences

    Island survivors: population genetic structure and demography of the critically endangered giant lizard of La Gomera, Gallotia bravoana

    Get PDF
    Background: The giant lizard of La Gomera (Gallotia bravoana), is an endemic lacertid of this Canary Island that lives confined to a very restricted area of occupancy in a steep cliff, and is catalogued as Critically Endangered by IUCN. We present the first population genetic analysis of the wild population as well as of captive-born individuals (for which paternity data are available) from a recovery center. Current genetic variability, and inferred past demographic changes were determined in order to discern the relative contribution of natural versus human-mediated effects on the observed decline in population size. Results: Genetic analyses indicate that the only known natural population of the species shows low genetic diversity and acts as a single evolutionary unit. Demographic analyses inferred a prolonged decline of the species for at least 230 generations. Depending on the assumed generation time, the onset of the decline was dated between 1200-13000 years ago. Pedigree analyses of captive individuals suggest that reproductive behavior of the giant lizard of La Gomera may include polyandry, multiple paternity and female long-term sperm retention. Conclusions: The current low genetic diversity of G. bravoana is the result of a long-term gradual decline. Because generation time is unknown in this lizard and estimates had large credibility intervals, it is not possible to determine the relative contribution of humans in the collapse of the population. Shorter generation times would favor a stronger influence of human pressure whereas longer generation times would favor a climate-induced origin of the decline. In any case, our analyses show that the wild population has survived for a long period of time with low levels of genetic diversity and a small effective population size. Reproductive behavior may have acted as an important inbreeding avoidance mechanism allowing the species to elude extinction. Overall, our results suggest that the species retains its adaptive potential and could restore its ancient genetic diversity under favorable conditions. Therefore, management of the giant lizard of La Gomera should concentrate efforts on enhancing population growth rates through captive breeding of the species as well as on restoring the carrying capacity of its natural habitat.Spanish Ministry of Education; European Life Project [LIFE 02 NAT-E-008614]; Ministerio de Ciencia e Innovacion [REN 2001- 1514/GLO, CGL 2010-18216]info:eu-repo/semantics/publishedVersio

    Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe
    corecore