5,100 research outputs found

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    A High Statistics Search for Electron-Neutrino --> Tau-Neutrino Oscillations

    Full text link
    We present new limits on nu_e to nu_tau and nu_e to nu_sterile oscillations by searching for electron neutrino dissappearance in the high-energy wide-band CCFR neutrino beam. Sensitivity to nu_tau appearance comes from tau decay modes in which a large fraction of the energy deposited is electromagnetic. The beam is composed primarily of muon neutrinos but this analysis uses the 2.3% electron neutrino component of the beam. Electron neutrino energies range from 30 to 600 GeV and flight lengths vary from 0.9 to 1.4 km. This limit improves the sensitivity of existing limits and obtains a lowest 90% confidence upper limit in sin**2(2*alpha) of 9.9 x 10**(-2) at delta-m**2 of 125 eV**2.Comment: submitted to Phys. Rev. D. Rapid Com

    Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED4_4

    Get PDF
    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched QED4_4. Results are compared for three different fermion-photon proper vertex {\it Ans\"{a}tze\/}: bare γμ\gamma^\mu, minimal Ball-Chiu, and Curtis-Pennington. The procedure is straightforward to implement and numerically stable. This is the first study in which this technique is used and it should prove useful in future DSE studies, whenever renormalization is required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure

    Renormalization of the elementary excitations in hole- and electron-doped cuprates due to spin fluctuations

    Full text link
    Extending our previous studies we present results for the doping-, momentum-, frequency-, and temperature- dependence of the kink-like change of the quasiparticle velocity resulting from the coupling to spin fluctuations. In the nodal direction a kink is found in both the normal and superconducting state while in the antinodal direction a kink occurs only below TcT_c due to the opening of the superconducting gap. A pronounced kink is obtained only for hole-doped, but not for electron-doped cuprates and is characteristically different from what is expected due to electron-phonon interaction. We further demonstrate that the kink structure is intimately connected to the resonance peak seen in inelastic neutron scattering. Our results suggest similar effects in other unconventional superconductors like Sr2RuO4{Sr}_2{RuO}_4.Comment: revised version, 12 pages, 19 figures. accepted for publication in PR

    Physics at a Neutrino Factory

    Full text link
    In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available from http://www.fnal.gov/projects/muon_collider/ This version fixes some printing problem

    Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering

    Full text link
    Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at large x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons'' makes some improvement. An exponentially falling F_2 \propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters'' and ``few-nucleon correlations'', can describe the data. A value of s=8.3 \pm 0.7(stat.)\pm 0.7(sys.) yields the best agreement with the data.Comment: 4 pages, 4 figures, 1 table. Sibmitted to PR

    A measurement of alphas(Q2)alpha_s(Q^2) from the Gross-Llewellyn Smith Sum Rule

    Full text link
    We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared (Q2Q^{2}), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for 1<Q2<15GeV2/c21 < Q^2 < 15 GeV^2/c^2. A comparison with the order αs3\alpha^{3}_{s} theoretical predictions yields a determination of αs\alpha_{s} at the scale of the Z-boson mass of 0.114±.012.0090.114 \pm^{.009}_{.012}. This measurement provides a new and useful test of perturbative QCD at low Q2Q^2, because of the low uncertainties in the higher order calculations.Comment: 4 pages, 4 figure

    On the co-evolution of supermassive black holes and their host galaxies since z = 3

    Get PDF
    [Abridged] To investigate the evolution in the relation between galaxy stellar and central black hole mass we construct a volume limited complete sample of 85 AGN with host galaxy stellar masses M_{*} > 10^{10.5} M_{sol}, and specific X-ray luminosities L_{X} > 2.35 x 10^{43} erg s^{-1} at 0.4 < z < 3. We calculate the Eddington limiting masses of the supermassive black holes residing at the centre of these galaxies, and observe an increase in the average Eddington limiting black hole mass with redshift. By assuming that there is no evolution in the Eddington ratio (\mu) and then that there is maximum possible evolution to the Eddington limit, we quantify the maximum possible evolution in the M_{*} / M_{BH} ratio as lying in the range 700 < M_{*}/M_{BH} < 10000, compared with the local value of M_{*}/M_{BH} ~ 1000. We furthermore find that the fraction of galaxies which are AGN (with L_{X} > 2.35 x 10^{43} erg s^{-1}) rises with redshift from 1.2 +/- 0.2 % at z = 0.7 to 7.4 +/- 2.0 % at z = 2.5. We use our results to calculate the maximum timescales for which our sample of AGN can continue to accrete at their observed rates before surpassing the local galaxy-black hole mass relation. We use these timescales to calculate the total fraction of massive galaxies which will be active (with L_{X} > 2.35 x 10^{43} erg s^{-1}) since z = 3, finding that at least ~ 40% of all massive galaxies will be Seyfert luminosity AGN or brighter during this epoch. Further, we calculate the energy density due to AGN activity in the Universe as 1.0 (+/- 0.3) x 10^{57} erg Mpc^{-3} Gyr^{-1}, potentially providing a significant source of energy for AGN feedback on star formation. We also use this method to compute the evolution in the X-ray luminosity density of AGN with redshift, finding that massive galaxy Seyfert luminosity AGN are the dominant source of X-ray emission in the Universe at z < 3.Comment: 25 pages, 10 figures, accepted for publication in MNRA
    • …
    corecore