4,822 research outputs found

    Baryonic Operators for Lattice Simulations

    Full text link
    The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.Comment: 3 pages, poster presented at Lattice2003(spectrum), Tsukuba, Japan, July 15-19, 200

    Baryonic sources using irreducible representations of the double-covered octahedral group

    Full text link
    Irreducible representations (IRs) of the double-covered octahedral group are used to construct lattice source and sink operators for three-quark baryons. The goal is to achieve a good coupling to higher spin states as well as ground states. Complete sets of local and nonlocal straight-link operators are explicitly shown for isospin 1/2 and 3/2 baryons. The orthogonality relations of the IR operators are confirmed in a quenched lattice simulation.Comment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26, 2004, 3 page

    Baryon operators and spectroscopy in lattice QCD

    Full text link
    The construction of the operators and correlators required to determine the excited baryon spectrum is presented, with the aim of exploring the spatial and spin structure of the states while minimizing the number of propagator inversions. The method used to construct operators that transform irreducibly under the symmetries of the lattice is detailed, and the properties of example operators are studied using domain-wall fermion valence propagators computed on MILC asqtad dynamical lattices.Comment: 7 pages, 2 figures, to appear in Proceedings of Workshop on Lattice Hadron Physics 2003, Cairns, Australia, July 22 - July 30, 200

    Exact Path-Integral Representations for the TT-Matrix in Nonrelativistic Potential Scattering

    Full text link
    Several path integral representations for the TT-matrix in nonrelativistic potential scattering are given which produce the complete Born series when expanded to all orders and the eikonal approximation if the quantum fluctuations are suppressed. They are obtained with the help of "phantom" degrees of freedom which take away explicit phases that diverge for asymptotic times. Energy conservation is enforced by imposing a Faddeev-Popov-like constraint in the velocity path integral. An attempt is made to evaluate stochastically the real-time path integral for potential scattering and generalizations to relativistic scattering are discussed.Comment: 6 pages, 2 figures. Contribution to the workshop "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ETC*, October 19-23, 2009. v2: typo corrected, matches published version + additional reference

    The Northeast Water polynya as an atmospheric CO2 sink: a seasonal rectification hypothesis

    Get PDF
    During the multidisciplinary ‘NEW92’ cruise of the United States Coast Guard Cutter (USCGC) Polar Sea to the recurrent Northeast Water (NEW) Polynya (77–81°N, 6–17°W; July–August 1992), total dissolved inorganic carbon and total alkalinity in the water column were measured with high precision to determine the quantitative impact of biological processes on the regional air-sea flux of carbon. Biological processes depleted the total inorganic carbon of summer surface waters by up to 2 mol C m−2 or about 3%. On a regional basis this depletion correlated with depth-integrated values of chlorophyll a, particulate organic carbon, and the inorganic nitrogen deficit. Replacement of this carbon through exchange with the atmosphere was stalled owing to the low wind speeds during the month of the cruise, although model calculations indicate that the depletion could be replenished by a few weeks of strong winds before ice forms in the autumn. These measurements and observations allowed formulation of a new hypothesis whereby seasonally ice-covered regions like the NEW Polynya promote a unique biologically and physically mediated “rectification” of the typical (ice free, low latitude) seasonal cycle of air-sea CO2 flux. The resulting carbon sink is consistent with other productivity estimates and represents an export of biologically cycled carbon either to local sediments or offshore. If this scenario is representative of seasonally ice-covered Arctic shelves, then the rectification process could provide a small, negative feedback to excess atmospheric CO2

    Collective consciousness and its pathologies: Understanding the failure of AIDS control and treatment in the United States

    Get PDF
    We address themes of distributed cognition by extending recent formal developments in the theory of individual consciousness. While single minds appear biologically limited to one dynamic structure of linked cognitive submodules instantiating consciousness, organizations, by contrast, can support several, sometimes many, such constructs simultaneously, although these usually operate relatively slowly. System behavior remains, however, constrained not only by culture, but by a developmental path dependence generated by organizational history, in the context of market selection pressures. Such highly parallel multitasking – essentially an institutional collective consciousness – while capable of reducing inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic malfunctions involving the distortion of information sent between workspaces and the possibility of pathological resilience – dysfunctional institutional lock-in. Consequently, organizations remain subject to canonical and idiosyncratic failures analogous to, but more complicated than, those afflicting individuals. Remediation is made difficult by the manner in which pathological externalities can write images of themselves onto both institutional function and corrective intervention. The perspective is applied to the failure of AIDS control and treatment in the United States

    G-Quadruplex Dynamics Contribute To Regulation Of Mitochondrial Gene Expression

    Get PDF
    Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells
    corecore