464 research outputs found

    The effects of temporary exclusion of activity due to wind farm construction on a lobster (Homarus gammarus) fishery suggests a potential management approach

    Get PDF
    Offshore wind farms form an important part of many countries strategy for responding to the threat of climate change but their development can conflict with other offshore activities. Static gear fisheries targeting sedentary benthic species are particularly affected by spatial management that involves exclusion of fishers. Here we investigate the ecological effect of a short-term closure of a European lobster (Homarus gammarus (L.)) fishing ground, facilitated by the development of the Westermost Rough offshore wind farm located on the north-east coast of the United Kingdom. We also investigate the effects on the population when the site is reopened on completion of the construction. We find that temporary closure offers some respite for adult animals and leads to increases in abundance and size of the target species in that area. Reopening of the site to fishing exploitation saw a decrease in catch rates and size structure, this did not reach levels below that of the surrounding area. Opening the site to exploitation also allows the fishery to recuperate some of the economic loss during the closure. We suggest that our results may indicate that temporary closures of selected areas may be beneficial and offer a management option for lobster fisheries

    Variations in Synechococcus Cell Quotas of Phosphorus, Sulfur, Manganese, Iron, Nickel, and Zinc within Mesoscale Eddies in the Sargasso Sea

    Get PDF
    The quotas of P, S, Mn, Fe, Ni, and Zn in individual Synechococcus cells collected from the surface and deep chlorophyll maximum (DCM) layer of three mesoscale eddies in the Sargasso Sea were measured using synchrotron X-ray fluorescence microscopy. Cells in a mode-water eddy had significantly higher P (57 +/- 10 amol) and Mn (28 +/- 7 zmol) cell quotas than cells collected from a cyclone (22 +/- 2 amol and 10 +/- 1 zmol, respectively) or anticyclone (25 +/- 3 amol and 18 +/- 3 zmol, respectively). Conversely, Ni and Zn quotas were significantly higher in the cells from the anticyclone (92 +/- 19 and 561 +/- 150 zmol, respectively) than in cells from the cyclonic (25 +/- 4 and 35 +/- 7 zmol, respectively) or mode-water (30 +/- 9 and 21 +/- 8 zmol, respectively) eddies. These changes may reflect biochemical responses (e. g., production of urease and alkaline phosphatase) to gradients in inorganic N and P supplies. Cellular quotas of Fe (111 +/- 17 zmol in the cyclone) and S (52 +/- 6 amol in the cyclone) did not vary significantly among eddies despite two-to threefold higher dissolved and particulate Fe concentrations in the anticylone. Cells collected from 10-m depth contained approximately 80% more Ni and S than cells collected from the DCM, potentially reflecting cell responses to heightened oxidative stress. Depth-related trends varied by eddy for the other elements. Cellular P and Zn varied significantly during repeated samplings of the cyclone, with quotas of both elements dropping as bulk chlorophyll biomass in the DCM increased. These data demonstrate the dynamic responses of phytoplankton elemental composition to physical and chemical environmental gradients

    Altered hippocampal epigenetic regulation underlying reduced cognitive development in response to early life environmental insults

    Get PDF
    The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.</p

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    Authigenic Iron Is a Significant Component of Oceanic Labile Particulate Iron Inventories

    Get PDF
    Particulate phases transport trace metals (TM) and thereby exert a major control on TM distribution in the ocean. Particulate TMs can be classified by their origin as lithogenic (crustal material), biogenic (cellular), or authigenic (formed in situ), but distinguishing these fractions analytically in field samples is a challenge often addressed using operational definitions and assumptions. These different phases require accurate characterization because they have distinct roles in the biogeochemical iron cycle. Particles collected from the upper 2,000 m of the northwest subtropical Atlantic Ocean over four seasonal cruises throughout 2019 were digested with a chemical leach to operationally distinguish labile particulate material from refractory lithogenics. Direct measurements of cellular iron (Fe) were used to calculate the biogenic contribution to the labile Fe fraction, and any remaining labile material was defined as authigenic. Total particulate Fe (PFe) inventories varied \u3c15% between seasons despite strong seasonality in dust inputs. Across seasons, the total PFe inventory (±1SD) was composed of 73 ± 13% lithogenic, 18 ± 7% authigenic, and 10 ± 8% biogenic Fe above the deep chlorophyll maximum (DCM), and 69 ± 8% lithogenic, 30 ± 8% authigenic, and 1.1 ± 0.5% biogenic Fe below the DCM. Data from three other ocean regions further reveal the importance of the authigenic fraction across broad productivity and Fe gradients, comprising ca. 20%-27% of total PFe

    "Refsdal" Meets Popper: Comparing Predictions of the Re-appearance of the Multiply Imaged Supernova Behind MACSJ1149.5+2223

    Get PDF
    Supernova “Refsdal,” multiply imaged by cluster MACS1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a timescale that is short compared to a human lifetime. In order to take advantage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. We compare the model predictions and show that they agree reasonably well with the measured time delays and magnification ratios between the known images, even though these quantities were not used as input. This agreement is encouraging, considering that the models only provide statistical uncertainties, and do not include additional sources of uncertainties such as structure along the line of sight, cosmology, and the mass sheet degeneracy. We then present the model predictions for the other appearances of supernova “Refsdal.” A future image will reach its peak in the first half of 2016, while another image appeared between 1994 and 2004. The past image would have been too faint to be detected in existing archival images. The future image should be approximately one-third as bright as the brightest known image (i.e., {H}{{AB}}≈ 25.7 mag at peak and {H}{{AB}}≈ 26.7 mag six months before peak), and thus detectable in single-orbit HST images. We will find out soon whether our predictions are correct

    Liquid metal nanodroplet dynamics inside nanocontainers

    Get PDF
    Here we report direct observations of spatial movements of nanodroplets of Pb metal trapped inside sealed carbon nanocontainers. We find drastic changes in the mobility of the liquid droplets as the particle size increases from a few to a few ten nanometers. In open containers the droplet becomes immobile and readily evaporates to the vacuum environment. The particle mobility strongly depends on confinement, particle size, and wetting on the enclosed surface. The collisions between droplets increase mobility but the tendency is reversed if collisions lead to droplet coalescence. The dynamics of confined nanodroplets could provide new insights into the activity of nanostructures in spatially constrained geometries
    corecore