1,329 research outputs found
Feedback-enhanced algorithm for aberration correction of holographic atom traps
We show that a phase-only spatial light modulator can be used to generate
non-trivial light distributions suitable for trapping ultracold atoms, when the
hologram calculation is included within a simple and robust feedback loop that
corrects for imperfect device response and optical aberrations. This correction
reduces the discrepancy between target and experimental light distribution to
the level of a few percent (RMS error). We prove the generality of this
algorithm by applying it to a variety of target light distributions of
relevance for cold atomic physics.Comment: 5 pages, 4 figure
Annealing-Induced Full Amorphization in a Multicomponent Metallic Film
We present direct experimental evidence that controllable amorphization and nanocrystallization during annealing of metastable films could serve as a precursor for exciting nanomaterials. The interesting discovery is that certain sputtered crystalline films become completely amorphous when annealed in the temperature range between the glass temperature and the crystallization temperature. Unlike other metallic glassy materials that exhibit annealing-induced devitrification, our good glass-forming films are transformed into various nanoscale and amorphous structures due to the annealing process. The formation of an amorphous phase gives rise to notable alterations in the electrical and mechanical properties of the film
Sub-Doppler laser cooling of 40K with Raman gray molasses on the D2 line
Gray molasses is a powerful tool for sub-Doppler laser cooling of atoms to low temperatures. For alkaline atoms, this technique is commonly implemented with cooling lasers which are blue-detuned from either the D1 or D2 line. Here we show that efficient gray molasses can be implemented on the D2 line of 40K with red-detuned lasers. We obtained temperatures of 48(2)µK, which enables direct loading of 9.2(3)x106 atoms from a magneto-optical trap into an optical dipole trap. We support our findings by a one-dimensional model and three-dimensional numerical simulations of the optical Bloch equations which qualitatively reproduce the experimentally observed cooling effects.PreprintPublisher PDFPeer reviewe
Shift invariant preduals of ℓ<sub>1</sub>(ℤ)
The Banach space ℓ<sub>1</sub>(ℤ) admits many non-isomorphic preduals, for
example, C(K) for any compact countable space K, along with many more
exotic Banach spaces. In this paper, we impose an extra condition: the predual
must make the bilateral shift on ℓ<sub>1</sub>(ℤ) weak<sup>*</sup>-continuous. This is
equivalent to making the natural convolution multiplication on ℓ<sub>1</sub>(ℤ)
separately weak*-continuous and so turning ℓ<sub>1</sub>(ℤ) into a dual Banach
algebra. We call such preduals <i>shift-invariant</i>. It is known that the
only shift-invariant predual arising from the standard duality between C<sub>0</sub>(K)
(for countable locally compact K) and ℓ<sub>1</sub>(ℤ) is c<sub>0</sub>(ℤ). We provide
an explicit construction of an uncountable family of distinct preduals which do
make the bilateral shift weak<sup>*</sup>-continuous. Using Szlenk index arguments, we
show that merely as Banach spaces, these are all isomorphic to c<sub>0</sub>. We then
build some theory to study such preduals, showing that they arise from certain
semigroup compactifications of ℤ. This allows us to produce a large number
of other examples, including non-isometric preduals, and preduals which are not
Banach space isomorphic to c<sub>0</sub>
Mode-Locking in Quantum-Hall-Effect Point Contacts
We study the effect of an ac drive on the current-voltage (I-V)
characteristics of a tunnel junction between two fractional Quantum Hall fluids
at filling an odd integer. Within the chiral Luttinger liquid model
of edge states, the point contact dynamics is described by a driven damped
quantum mechanical pendulum. In a semi-classical limit which ignores electron
tunnelling, this model exhibits mode-locking, which corresponds to current
plateaus in the I-V curve at integer multiples of , with
the ac drive angular frequency. By analyzing the full quantum model at
non-zero using perturbative and exact methods, we study the effect of
quantum fluctuation on the mode-locked plateaus. For quantum
fluctuations smear completely the plateaus, leaving no trace of the ac drive.
For smeared plateaus remain in the I-V curve, but are not
centered at the currents . For rounded plateaus
centered around the quantized current values are found. The possibility of
using mode locking in FQHE point contacts as a current-to-frequency standard is
discussed.Comment: 12 pages, 8 figures, minor change
Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport
We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation
Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc
Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression
Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.
We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.
Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification
- …