379 research outputs found

    Nome Day Shelter

    Get PDF
    The Nome Day Shelter was created in response to community needs due to weather- related exposure deaths, impoverished community members, homelessness, hospital emergency department interactions, and various presentations of public social maladies. Although the protection of women was not the primary purpose in the establishment of the Day Shelter, this factor is a significant by-product of this sanctuary. An accurate accounting of MMIWG does not exist in the Norton Sound region. It may be reasonably inferred safety the Shelter provides has an impact on MMIWG in the Bering Strait region

    Mitochondrial Metabolism in Major Neurological Diseases

    Get PDF
    Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell’s ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation–functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression

    Approach or avoidance (or both?): Integrating core self-evaluations within an approach/avoidance framework

    Get PDF
    Core self-evaluations (CSE) represent a new personality construct that,despite an accumulation of evidence regarding its predictive validity,provokes debate regarding the fundamental approach or avoidance na-ture of the construct. This set of studies sought to clarify the ap-proach/avoidance nature of CSE by examining its relation with ap-proach/avoidance personality traits and motivation constructs (Study 1);we subsequently examined approach/avoidance motivational mecha-nisms as mediators of the relation between CSE and job performance(Study 2). Overall, the studies demonstrate that CSE is best concep-tualized as representing both (high) approach tendencies and (low)avoidance tendencies; implications of these findings for CSE theoryare discussed

    Pitfalls in Quantitative Myocardial PET Perfusion I: Myocardial Partial Volume Correction

    Get PDF
    BACKGROUND: PET quantitative myocardial perfusion requires correction for partial volume loss due to one-dimensional LV wall thickness smaller than scanner resolution. METHODS: We aimed to assess accuracy of risk stratification for death, MI, or revascularization after PET using partial volume corrections derived from two-dimensional ACR and three-dimensional NEMA phantoms for 3987 diagnostic rest-stress perfusion PETs and 187 MACE events. NEMA, ACR, and Tree phantoms were imaged with Rb-82 or F-18 for size-dependent partial volume loss. Perfusion and Coronary Flow Capacity were recalculated using different ACR- and NEMA-derived partial volume corrections compared by Kolmogorov-Smirnov statistics to standard perfusion metrics with established correlations with MACE. RESULTS: Partial volume corrections based on two-dimensional ACR rods (two equal radii) and three-dimensional NEMA spheres (three equal radii) over estimate partial volume corrections, quantitative perfusion, and Coronary Flow Capacity by 50% to 150% over perfusion metrics with one-dimensional partial volume correction, thereby substantially impairing correct risk stratification. CONCLUSIONS: ACR (2-dimensional) and NEMA (3-dimensional) phantoms overestimate partial volume corrections for 1-dimensional LV wall thickness and myocardial perfusion that are corrected with a simple equation that correlates with MACE for optimal risk stratification applicable to most PET-CT scanners for quantifying myocardial perfusion

    Oral Gavage Delivery of Stable Isotope Tracer for in Vivo Metabolomics

    Get PDF
    Stable isotope-resolved metabolomics (SIRM) is a powerful tool for understanding disease. Advances in SIRM techniques have improved isotopic delivery and expanded the workflow from exclusively in vitro applications to in vivo methodologies to study systemic metabolism. Here, we report a simple, minimally-invasive and cost-effective method of tracer delivery to study SIRM in vivo in laboratory mice. Following a brief fasting period, we orally administered a solution of [U-13C] glucose through a blunt gavage needle without anesthesia, at a physiological dose commonly used for glucose tolerance tests (2 g/kg bodyweight). We defined isotopic enrichment in plasma and tissue at 15, 30, 120, and 240 min post-gavage. 13C-labeled glucose peaked in plasma around 15 min post-gavage, followed by period of metabolic decay and clearance until 4 h. We demonstrate robust enrichment of a variety of central carbon metabolites in the plasma, brain and liver of C57/BL6 mice, including amino acids, neurotransmitters, and glycolytic and tricarboxylic acid (TCA) cycle intermediates. We then applied this method to study in vivo metabolism in two distinct mouse models of diseases known to involve dysregulation of glucose metabolism: Alzheimer’s disease and type II diabetes. By delivering [U-13C] glucose via oral gavage to the 5XFAD Alzheimer’s disease model and the Lepob/ob type II diabetes model, we were able to resolve significant differences in multiple central carbon pathways in both model systems, thus providing evidence of the utility of this method to study diseases with metabolic components. Together, these data clearly demonstrate the efficacy and efficiency of an oral gavage delivery method, and present a clear time course for 13C enrichment in plasma, liver and brain of mice following oral gavage of [U-13C] glucose—data we hope will aid other researchers in their own 13C-glucose metabolomics study design

    The effect of iron- and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean

    Get PDF
    The deep chlorophyll maximum (DCM) is a widespread feature in most stratified, oligotrophic waters. In addition to their well-established importance for many surface phytoplankton communities, more recent evidence suggests that iron, light or co-limitation may also be important drivers for some DCM communities. To test this hypothesis, we describe the results from six grow-out experiments, four from the Equatorial Pacific Ocean (between 150°E and 140°W), one in Western Pacific Warm Pool (9°S, 170°E) and one in the middle of the Tasman Sea (36°S). Photosynthetic efficiency (Fv/Fm) and biomass response, including Chl a and phytoplankton community structure (pennate diatoms, photosynthetic eukaryotes, Synechococcus, Prochlorococcus, and major Prochlorococcus ecotypes), were assessed over five days in control, +Fe, +Light or +Fe +Light treatments. Photosynthetic efficiency did not change dramatically in any of the treatments at any of the locations, except at 0°N 140°W where the control and +Fe bottles had elevated efficiency relative to both +Light treatments. Except for some ecotypes of Prochlorococcus (eMIT9313 and eNATL2A), phytoplankton populations were most strongly limited by light in the DCM. Pennate diatoms and other photosynthetic eukaryotes showed the most enhancement with the addition of iron and light at some stations and may be co-limited, but no phytoplankton populations were enhanced by adding iron alone. Although the duration and magnitude of the responses varied depending on initial macronutrient concentrations, they were generally consistent across the locations sampled. These results suggest that light is the primary limiting resource of the DCM for this vast region, but that iron can play an important additive role in limiting phytoplankton populations in locations where flux to the DCM is reduced

    Practice characteristics of Emergency Department extracorporeal cardiopulmonary resuscitation (eCPR) programs in the United States: The current state of the art of Emergency Department extracorporeal membrane oxygenation (ED ECMO).

    Get PDF
    PURPOSE: To characterize the current scope and practices of centers performing extracorporeal cardiopulmonary resuscitation (eCPR) on the undifferentiated patient with cardiac arrest in the emergency department. METHODS: We contacted all US centers in January 2016 that had submitted adult eCPR cases to the Extracorporeal Life Support Organization (ELSO) registry and surveyed them, querying for programs that had performed eCPR in the Emergency Department (ED ECMO). Our objective was to characterize the following domains of ED ECMO practice: program characteristics, patient selection, devices and techniques, and personnel. RESULTS: Among 99 centers queried, 70 responded. Among these, 36 centers performed ED ECMO. Nearly 93% of programs are based at academic/teaching hospitals. 65% of programs are less than 5 years old, and 60% of programs perform ≤3 cases per year. Most programs (90%) had inpatient eCPR or salvage ECMO programs prior to starting ED ECMO programs. The majority of programs do not have formal inclusion and exclusion criteria. Most programs preferentially obtain vascular access via the percutaneous route (70%) and many (40%) use mechanical CPR during cannulation. The most commonly used console is the Maquet Rotaflow(®). Cannulation is most often performed by cardiothoracic (CT) surgery, and nearly all programs (\u3e85%) involve CT surgeons, perfusionists, and pharmacists. CONCLUSIONS: Over a third of centers that submitted adult eCPR cases to ELSO have performed ED ECMO. These programs are largely based at academic hospitals, new, and have low volumes. They do not have many formal inclusion or exclusion criteria, and devices and techniques are variable

    Novel Influences of Sex and \u3ci\u3eAPOE\u3c/i\u3e Genotype on Spinal Plasticity and Recovery of Function after Spinal Cord Injury

    Get PDF
    Spinal cord injuries can abolish both motor and sensory function throughout the body. Spontaneous recovery after injury is limited and can vary substantially between individuals. Despite an abundance of therapeutic approaches that have shown promise in preclinical models, there is currently a lack of effective treatment strategies that have been translated to restore function after SCI in the human population. We hypothesized that sex and genetic background of injured individuals could impact how they respond to treatment strategies, presenting a barrier to translating therapies that are not tailored to the individual. One gene of particular interest is APOE, which has been extensively studied in the brain due to its allele-specific influences on synaptic plasticity, metabolism, inflammation, and neurodegeneration. Despite its prominence as a therapeutic target in brain injury and disease, little is known about how it influences neural plasticity and repair processes in the spinal cord. Utilizing humanized mice, we examined how the ε3 and ε4 alleles of APOE influence the efficacy of therapeutic intermittent hypoxia (IH) in inducing spinally-mediated plasticity after cervical SCI. IH is sufficient to enhance plasticity and restore motor function after experimental SCI in genetically similar rodent populations, but its effect in human subjects is more variable (Golder, 2005; Hayes et al., 2014). Our results demonstrate that both sex and APOE genotype determine the extent of respiratory motor plasticity that is elicited by IH, highlighting the importance of considering these clinically relevant variables when translating therapeutic approaches for the SCI community. Significance Statement There is currently a critical need for therapeutics that restore motor and sensory function effectively after cervical spinal cord injury. Although many therapeutic approaches, including intermittent hypoxia, are being investigated for their potential to enhance spinal plasticity and improve motor outcomes after SCI, it is unknown whether the efficacy of these treatment strategies is influenced by individuals’ genetic background. Here we show that APOE genotype and sex both play a role in determining the propensity for motor plasticity in humanized mice after cervical SCI. These results indicate that sex and genetic background dictate how individuals respond to therapeutic approaches, thereby emphasizing the importance of developing personalized medicine for the diverse SCI population

    Perturbations of nuclear C*-algebras

    Full text link
    Kadison and Kastler introduced a natural metric on the collection of all C*-subalgebras of the bounded operators on a separable Hilbert space. They conjectured that sufficiently close algebras are unitarily conjugate. We establish this conjecture when one algebra is separable and nuclear. We also consider one-sided versions of these notions, and we obtain embeddings from certain near inclusions involving separable nuclear C*-algebras. At the end of the paper we demonstrate how our methods lead to improved characterisations of some of the types of algebras that are of current interest in the classification programme.Comment: 45 page

    The Effects of Circumcision on the Penis Microbiome

    Get PDF
    Circumcision is associated with significant reductions in HIV, HSV-2 and HPV infections among men and significant reductions in bacterial vaginosis among their female partners.We assessed the penile (coronal sulci) microbiota in 12 HIV-negative Ugandan men before and after circumcision. Microbiota were characterized using sequence-tagged 16S rRNA gene pyrosequencing targeting the V3-V4 hypervariable regions. Taxonomic classification was performed using the RDP NaĂŻve Bayesian Classifier. Among the 42 unique bacterial families identified, Pseudomonadaceae and Oxalobactericeae were the most abundant irrespective of circumcision status. Circumcision was associated with a significant change in the overall microbiota (PerMANOVA p = 0.007) and with a significant decrease in putative anaerobic bacterial families (Wilcoxon Signed-Rank test p = 0.014). Specifically, two families-Clostridiales Family XI (p = 0.006) and Prevotellaceae (p = 0.006)-were uniquely abundant before circumcision. Within these families we identified a number of anaerobic genera previously associated with bacterial vaginosis including: Anaerococcus spp., Finegoldia spp., Peptoniphilus spp., and Prevotella spp.The anoxic microenvironment of the subpreputial space may support pro-inflammatory anaerobes that can activate Langerhans cells to present HIV to CD4 cells in draining lymph nodes. Thus, the reduction in putative anaerobic bacteria after circumcision may play a role in protection from HIV and other sexually transmitted diseases
    • …
    corecore