11,425 research outputs found
Repeat-Accumulate Codes for Reconciliation in Continuous Variable Quantum Key Distribution
This paper investigates the design of low-complexity error correction codes
for the verification step in continuous variable quantum key distribution
(CVQKD) systems. We design new coding schemes based on quasi-cyclic
repeat-accumulate codes which demonstrate good performances for CVQKD
reconciliation
Earthquake Arrival Association with Backprojection and Graph Theory
The association of seismic wave arrivals with causative earthquakes becomes
progressively more challenging as arrival detection methods become more
sensitive, and particularly when earthquake rates are high. For instance,
seismic waves arriving across a monitoring network from several sources may
overlap in time, false arrivals may be detected, and some arrivals may be of
unknown phase (e.g., P- or S-waves). We propose an automated method to
associate arrivals with earthquake sources and obtain source locations
applicable to such situations. To do so we use a pattern detection metric based
on the principle of backprojection to reveal candidate sources, followed by
graph-theory-based clustering and an integer linear optimization routine to
associate arrivals with the minimum number of sources necessary to explain the
data. This method solves for all sources and phase assignments simultaneously,
rather than in a sequential greedy procedure as is common in other association
routines. We demonstrate our method on both synthetic and real data from the
Integrated Plate Boundary Observatory Chile (IPOC) seismic network of northern
Chile. For the synthetic tests we report results for cases with varying
complexity, including rates of 500 earthquakes/day and 500 false
arrivals/station/day, for which we measure true positive detection accuracy of
> 95%. For the real data we develop a new catalog between January 1, 2010 -
December 31, 2017 containing 817,548 earthquakes, with detection rates on
average 279 earthquakes/day, and a magnitude-of-completion of ~M1.8. A subset
of detections are identified as sources related to quarry and industrial site
activity, and we also detect thousands of foreshocks and aftershocks of the
April 1, 2014 Mw 8.2 Iquique earthquake. During the highest rates of aftershock
activity, > 600 earthquakes/day are detected in the vicinity of the Iquique
earthquake rupture zone
Recommended from our members
Sequence elements controlling expression of Barley stripe mosaic virus subgenomic RNAs in vivo.
Barley stripe mosaic virus (BSMV) contains three positive-sense, single-stranded genomic RNAs, designated alpha, beta, and gamma, that encode seven major proteins and one minor translational readthrough protein. Three proteins (alphaa, betaa, and gammaa) are translated directly from the genomic RNAs and the remaining proteins encoded on RNAbeta and RNAgamma are expressed via three subgenomic messenger RNAs (sgRNAs). sgRNAbeta1 directs synthesis of the triple gene block 1 (TGB1) protein. The TGB2 protein, the TGB2' minor translational readthrough protein, and the TGB3 protein are expressed from sgRNAbeta2, which is present in considerably lower abundance than sgRNAbeta1. A third sgRNA, sgRNAgamma, is required for expression of the gammab protein. We have used deletion analyses and site-specific mutations to define the boundaries of promoter regions that are critical for expression of the BSMV sgRNAs in infected protoplasts. The results reveal that the sgRNAbeta1 promoter encompasses positions -29 to -2 relative to its transcription start site and is adjacent to a cis-acting element required for RNAbeta replication that maps from -107 to -74 relative to the sgRNAbeta1 start site. The core sgRNAbeta2 promoter includes residues -32 to -17 relative to the sgRNAbeta2 transcriptional start site, although maximal activity requires an upstream hexanucleotide sequence residing from positions -64 to -59. The sgRNAgamma promoter maps from -21 to +2 relative to its transcription start site and therefore partially overlaps the gammaa gene. The sgRNAbeta1, beta2, and gamma promoters also differ substantially in sequence, but have similarities to the putative homologous promoters of other Hordeiviruses. These differences are postulated to affect competition for the viral polymerase, coordination of the temporal expression and abundance of the TGB proteins, and constitutive expression of the gammab protein
Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance
We show that interferometry can be applied to study irregular, rapidly
rotating structures, as are expected in the turbulent accretion flow near a
black hole. Specifically, we analyze the lagged covariance between
interferometric baselines of similar lengths but slightly different
orientations. For a flow viewed close to face-on, we demonstrate that the peak
in the lagged covariance indicates the direction and angular velocity of the
emission pattern from the flow. Even for moderately inclined flows, the
covariance robustly estimates the flow direction, although the estimated
angular velocity can be significantly biased. Importantly, measuring the
direction of the flow as clockwise or counterclockwise on the sky breaks a
degeneracy in accretion disk inclinations when analyzing time-averaged images
alone. We explore the potential efficacy of our technique using
three-dimensional, general relativistic magnetohydrodynamic (GRMHD)
simulations, and we highlight several baseline pairs for the Event Horizon
Telescope (EHT) that are well-suited to this application. These results
indicate that the EHT may be capable of estimating the direction and angular
velocity of the emitting material near Sagittarius A*, and they suggest that a
rotating flow may even be utilized to improve imaging capabilities.Comment: 8 Pages, 4 Figures, accepted for publication in Ap
Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements
We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs
A bead on a hoop rotating about a horizontal axis: a 1-D ponderomotive trap
We describe a simple mechanical system that operates as a ponderomotive
particle trap, consisting of a circular hoop and a frictionless bead, with the
hoop rotating about a horizontal axis lying in the plane of the hoop. The bead
in the frame of the hoop is thus exposed to an effective sinusoidally-varying
gravitational field. This field's component along the hoop is a zero at the top
and bottom. In the same frame, the bead experiences a time-independent
centrifugal force that is zero at the top and bottom as well. The system is
analyzed in the ideal case of small displacements from the minimum, and the
motion of the particle is shown to satisfy the Mathieu equation. In the
particular case that the axis of rotation is tangential to the hoop, the system
is an exact analog for the rf Paul ion trap. Various complicating factors such
as anharmonic terms, friction and noise are considered. A working model of the
proposed system has been constructed, using a ball-bearing rolling in a tube
along the outside of a section of a bicycle rim. The apparatus demonstrates in
detail the operation of an rf Paul trap by reproducing the dynamics of trapped
atomic ions and illustrating the manner in which the electric potential varies
with time.Comment: Second external review for AJP, 28 pages double spaced, 11 figure
Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development
Cilia and flagella are actively bending slender organelles, performing
functions such as motility, feeding and embryonic symmetry breaking. We review
the mechanics of viscous-dominated microscale flow, including time-reversal
symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the
fundamental force singularity, higher order multipoles, and the method of
images, providing physical insight and forming a basis for computational
approaches. Two biological problems are then considered in more detail: (1)
left-right symmetry breaking flow in the node, a microscopic structure in
developing vertebrate embryos, and (2) motility of microswimmers through
non-Newtonian fluids. Our model of the embryonic node reveals how particle
transport associated with morphogenesis is modulated by the gradual emergence
of cilium posterior tilt. Our model of swimming makes use of force
distributions within a body-conforming finite element framework, allowing the
solution of nonlinear inertialess Carreau flow. We find that a three-sphere
model swimmer and a model sperm are similarly affected by shear-thinning; in
both cases swimming due to a prescribed beat is enhanced by shear-thinning,
with optimal Deborah number around 0.8. The sperm exhibits an almost perfect
linear relationship between velocity and the logarithm of the ratio of zero to
infinite shear viscosity, with shear-thickening hindering cell progress.Comment: 20 pages, 24 figure
Effect of spatial waveform on apparent spatial frequency
AbstractWe examined the effect of spatial waveform on the perceived spatial frequency of a grating target. The luminance profile of 0.5 c/° sinusoidal gratings was modified by either compressive or expansive power functions, and was presented alternately with a true sinusoidal grating. Subjects matched the apparent spatial frequency of the two gratings using a method of adjustment. Both compressive and expansive power functions lowered the perceived spatial frequency of the grating, irrespective of the stimulus contrast. Rectified sine wave gratings were also found to reduce apparent spatial frequency. The magnitude of the spatial frequency shifts with spatial waveform diminished with successive matches, which may represent a change in matching strategy employed by observers. Calculations and a further experiment suggest that judgements of spatial frequency may in part be determined by the separation between edges in a grating
Putting pharmaceuticals into the wider context of challenges to fish populations in rivers
The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure
- …