4 research outputs found

    Ratio of Urinary Proteins to Albumin Excretion Shifts Substantially during Progression of the Podocytopathy Alport Syndrome, and Spot Urine Is a Reliable Method to Detect These Pathologic Changes

    Get PDF
    The urinary albumin- and protein-to-creatinine ratios (UACR and UPCR, respectively) are key endpoints in most clinical trials assessing risk of progression of chronic kidney disease (CKD). For the first time, the current study compares the UACR versus the UPCR head-to-head at early stages of CKD, taking use of the hereditary podocytopathy Alport syndrome (AS) as a model disease for any CKD. Urine samples originated from the prospective randomized, controlled EARLY PRO-TECT Alport trial (NCT01485978). Urine samples from 47 children with confirmed diagnoses of AS at very early stages of CKD were divided according to the current stage of AS: stage 0 (UACR 300 mg/g). The range of estimated glomerular filtration rate was 75–187.6 mL/min. The mean age was 10.4 ± 4.5 years. In children at stage 0, proteinuria in spot urine, confirmed in 24 h urine, was almost ten times higher than albuminuria (106.4 ± 42.2 vs. 12.5 ± 9.7; p p p = 0.36). In 17 children, UACRs and UPCRs were measured simultaneously in 24 h urine and spot urine in the same study visit. Interestingly, the UACR (and UPCR) in 24 h urine vs. in spot urine varied by less than 10% (266.8 ± 426.4 vs. 291.2 ± 530.2). In conclusion, our study provides the first evidence that in patients with normal glomerular filtration rate (GFR) and low amounts of albuminuria, especially in children with podocytopathies such as AS, measuring the UACR and UPCR in spot urine is a reliable and convenient alternative to 24 h urine collection. Our study advocates both the UACR and the UPCR as relevant diagnostic biomarkers in future clinical trials in children with glomerular diseases because the UPCR seems to be a very significant parameter at very early stages of podocytopathies. The German Federal Ministry of Education and Research funded this trial (01KG1104)

    De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis

    No full text
    Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 Ă— 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 Ă— 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.</p

    De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis

    No full text
    Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 3 10(-11)). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 3 10(-15)). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease
    corecore