2 research outputs found

    Reductions of Plastic Microbeads from Personal Care Products in Wastewater Effluents and Lake Waters Following Regulatory Actions

    No full text
    Plastic microbeads were widely used as exfoliants in personal care products (PCPs; e.g., hand/body washes) in North America, but restrictions were imposed on their use in PCPs in the U.S. (2017) and Canada (2018). We provide the first assessment of whether restrictions are effectively reducing microbeads entering surface waters. We examined their abundance, character, and trends in wastewater treatment plant (WWTP) effluents in Toronto, Canada, from 2016 to 2019, and in adjacent Lake Ontario surface waters (2015 and 2018), encompassing the period before and after the bans. Microbeads isolated from PCPs purchased in 2015 provided a visual morphological key with “irregular” and “spherical” microbead categories. Median concentrations of irregular microbeads, composed of polyethylene plastic, declined by up to 86% in WWTP effluents from 8.4 to 14.3 particles/m3 before to 2.0–2.2 particles/m3 after the bans, while those of spherical microbeads, predominantly synthetic/polyethylene wax, ranged within 0.5–2.3 particles/m3 and did not differ before and after the bans since, as nonplastic, they were not regulated. Similarly, amounts of irregular microbeads declined relative to spherical microbeads in Lake Ontario, indicating that product changes may be influencing observations in lake waters. The results suggest that the Canadian and U.S. restrictions effectively and rapidly reduced plastic microbeads entering waters via WWTPs

    Reductions of Plastic Microbeads from Personal Care Products in Wastewater Effluents and Lake Waters Following Regulatory Actions

    No full text
    Plastic microbeads were widely used as exfoliants in personal care products (PCPs; e.g., hand/body washes) in North America, but restrictions were imposed on their use in PCPs in the U.S. (2017) and Canada (2018). We provide the first assessment of whether restrictions are effectively reducing microbeads entering surface waters. We examined their abundance, character, and trends in wastewater treatment plant (WWTP) effluents in Toronto, Canada, from 2016 to 2019, and in adjacent Lake Ontario surface waters (2015 and 2018), encompassing the period before and after the bans. Microbeads isolated from PCPs purchased in 2015 provided a visual morphological key with “irregular” and “spherical” microbead categories. Median concentrations of irregular microbeads, composed of polyethylene plastic, declined by up to 86% in WWTP effluents from 8.4 to 14.3 particles/m3 before to 2.0–2.2 particles/m3 after the bans, while those of spherical microbeads, predominantly synthetic/polyethylene wax, ranged within 0.5–2.3 particles/m3 and did not differ before and after the bans since, as nonplastic, they were not regulated. Similarly, amounts of irregular microbeads declined relative to spherical microbeads in Lake Ontario, indicating that product changes may be influencing observations in lake waters. The results suggest that the Canadian and U.S. restrictions effectively and rapidly reduced plastic microbeads entering waters via WWTPs
    corecore