235 research outputs found

    Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    Get PDF
    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle

    The Rise of the s-Process in the Galaxy

    Full text link
    From newly-obtained high-resolution, high signal-to-noise ratio spectra the abundances of the elements La and Eu have been determined over the stellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarf stars. Lanthanum is predominantly made by the s-process in the solar system, while Eu owes most of its solar system abundance to the r-process. The changing ratio of these elements in stars over a wide metallicity range traces the changing contributions of these two processes to the Galactic abundance mix. Large s-process abundances can be the result of mass transfer from very evolved stars, so to identify these cases, we also report carbon abundances in our metal-poor stars. Results indicate that the s-process may be active as early as [Fe/H]=-2.6, alalthough we also find that some stars as metal-rich as [Fe/H]=-1 show no strong indication of s-process enrichment. There is a significant spread in the level of s-process enrichment even at solar metallicity.Comment: 64 pages, 15 figures; ApJ 2004 in pres

    A Pharmacogenetic Approach to Identify Mutant Forms of α-Galactosidase A that Respond to a Pharmacological Chaperone for Fabry Disease

    Get PDF
    Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc

    Hunting for the progenitor of SN 1006: High resolution spectroscopic search with the FLAMES instrument

    Full text link
    Type Ia supernovae play a significant role in the evolution of the Universe and have a wide range of applications. It is widely believed that these events are the thermonuclear explosions of carbon-oxygen white dwarfs close to the Chandrasekhar mass (1.38 M\odot). However, CO white dwarfs are born with masses much below the Chandrasekhar limit and thus require mass accretion to become Type Ia supernovae. There are two main scenarios for accretion. First, the merger of two white dwarfs and, second, a stable mass accretion from a companion star. According to predictions, this companion star (also referred to as donor star) survives the explosion and thus should be visible in the center of Type Ia remnants. In this paper we scrutinize the central stars (79 in total) of the SN 1006 remnant to search for the surviving donor star as predicted by this scenario. We find no star consistent with the traditional accretion scenario in SN1006.Comment: 11 pages, accepted by Ap

    The Most Metal-Poor Stars. II. Chemical Abundances of 190 Metal-Poor Stars Including 10 New Stars With [Fe/H] < -3.5

    Get PDF
    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] < -2.5, of which 86 are extremely metal poor, [Fe/H] < -3.0. Our program stars include ten new objects with [Fe/H] < -3.5. We identify a sample of "normal" metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to "normal" stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus Teff which likely reflects non-LTE and/or 3D effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.Comment: Accepted for publication in Ap

    Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit

    Get PDF
    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of 0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (Teff ~< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be co-moving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.Comment: 22 pages; accepted in A

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Quantitative expression and localization of GABAB receptor protein subunits in hippocampi from patients with refractory temporal lobe epilepsy

    Get PDF
    This study investigates GABAB protein expression and mRNA levels in three types of specimens. Two types of specimens from patients with temporal lobe epilepsy (TLE), secondary to hippocampal sclerosis, sclerotic hippocampal samples (TLE-HS), and tissue from the structurally preserved non-spiking ipsilateral superior temporal gyrus (TLE-STG) removed from the same patient during epilepsy surgery; and third specimen is hippocampal tissue from individuals with no history of epilepsy (post-mortem controls, PMC). mRNA expression of GABAB subunits was quantified in TLE-HS, TLE-STG and PMC specimens by qRT-PCR. Qualitative and quantitative Western blot (WB) and immunohistochemistry techniques were employed to quantify and localize GABAB proteins subunits. qRT-PCR data demonstrated an overall decrease of both GABAB1 isoforms in TLE-HS compared to TLE-STG. These results were mirrored by the WB findings. GABAB2 mRNA and protein were significantly reduced in TLE-HS samples compared to TLE-STG; however they appeared to be upregulated in TLE-HS compared to the PMC samples. Immunohistochemistry (IHC) showed that GABAB proteins were widely distributed in PMC and TLE-HS hippocampal sections with regional differences in the intensity of the signal. The higher expression of mature GABAB protein in TLE-HS than PMC is in agreement with previous studies. However, these findings could be due to post-mortem changes in PMC specimens. The TLE-STG samples examined here represent a better 'control' tissue compared to TLE-HS samples characterized by lower than expected GABAB expression. This interpretation provides a better explanation for previous functional studies suggesting reduced inhibition in TLE-HS tissue due to attenuated GABAB currents. [Abstract copyright: Copyright © 2017. Published by Elsevier Ltd.
    corecore