60 research outputs found

    The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia.

    Get PDF
    Sickle cell anemia (SCA) is one of the commonest severe inherited disorders. Nevertheless, effective treatments remain inadequate and novel ones are avidly sought. A promising advance has been the design of novel compounds which react with hemoglobin S (HbS) to increase oxygen (O2 ) affinity and reduce sickling. One of these, voxelotor (GBT440), is currently in advanced clinical trials. A structural analogue, GBT1118, was investigated in the current work. As RBC dehydration is important in pathogenesis of SCA, the effect of GBT1118 on RBC cation permeability was also studied. Activities of Psickle , the Gardos channel and the KCl cotransporter (KCC) were all reduced. Gardos channel and KCC activities were also inhibited in RBCs treated with Ca2+ ionophore or the thiol reagent N-ethylmaleimide, indicative of direct effects on these two transport systems. Consistent with its action on RBC membrane transporters, GBT1118 significantly increased RBC hydration. RBC hemolysis was reduced in a nonelectrolyte lysis assay. Further to its direct effects on O2 affinity, GBT1118 was therefore found to reduce RBC shrinkage and fragility. Findings reveal important effects of GBT1118 on protecting sickle cells and suggest that this is approach may represent a useful therapy for amelioration of the clinical complications of SCA.Sultanate of Oman His Majesty Sultan Qaboos's 1000 grants British Heart Foundatio

    Measurement of erythrocyte membrane mannoses to assess splenic function

    Get PDF
    ACKNOWLEDGEMENTS This work was funded by Aberdeen University Development Trust and Friends of Anchor. The University of Aberdeen is applying for a patent based on this work. Aberdeen University Development Trust (GrantNumber(s): DB10452-11) Friends of Anchor (GrantNumber(s): RS 2018 001)Peer reviewedPublisher PD

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).

    Embodying compassion: A virtual reality paradigm for overcoming excessive self-criticism

    Get PDF
    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.N/

    Numerical Relativity: A review

    Full text link
    Computer simulations are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the particular case of General Relativity, numerical models have proved extremely valuable for investigations of strong field scenarios and been crucial to reveal unexpected phenomena. Considerable efforts are being spent to simulate astrophysically relevant simulations, understand different aspects of the theory and even provide insights in the search for a quantum theory of gravity. In the present article I review the present status of the field of Numerical Relativity, describe the techniques most commonly used and discuss open problems and (some) future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and Quantum Gravity. (uses iopart.cls

    Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance

    Get PDF
    Acknowledgements We are grateful for the assistance provided by both the Microscopy and Histology Core Facility, and the Iain Fraser Cytometry Centre, at the University of Aberdeen. We thank Ann Wheeler and Matt Pearson from Edinburgh Super-Resolution Imaging Consortium for technical support with 3D SIM microscopy. We also thank Janet A. Willment and Bernard Kerscher, supervised by G.D.B., for providing the Fc fusion proteins, Jeanette A. Wagener, supervised by Neil A.R.G. Gow, for providing high purity chitin, Jan Westland for obtaining blood samples and Paul Crocker for useful discussions. Principal funding for this project was provided by Wellcome Trust grant 094847 (R.N.B., L.P.E., M.A.V.). In addition, support was provided by Biotechnology and Biological Sciences Research Council grants BBF0083091 (A.D. and S.M.H.) and BBK0161641 (A.D. and S.M.H.), Wellcome Trust grant 082098 (A.D.), Wellcome Trust grants 97377, 102705 (G.D.B.), and funding for the MRC Centre for Medical Mycology at the University of Aberdeen MR/N006364/1 (G.D.B.).Peer reviewedPublisher PD
    corecore