24 research outputs found
Recommended from our members
Environmental sampling to assess the bioburden of Mycobacterium avium subspecies paratuberculosis in drylot pens on California dairies.
Mycobacterium avium subspecies paratuberculosis (MAP) is a bacterium that can cause substantial economic losses in infected dairy herds due to reduced milk production and increased cow-replacement costs. In order to control MAP in dairies with drylot pens, a standardized environmental sampling protocol to quantify MAP in fecal slurry was developed based on an existing protocol for freestall pens. Specifically, following a 24 h hold of the flush, a grab sample of approximately 10 ml of fecal slurry was collected every 1 m along the flush lane of the drylot pens, avoiding individual cow fecal pats. To determine the reliability and repatability of the new environmental sampling protocol for estimation of MAP bioburden at the pen level, two collectors simultaneously collected fecal slurry samples every day for 3 days from six drylot cow pens on two Central California dairies. During the study period no cow movement between pens was allowed with the exception of sick cows. The study herds had MAP seroprevalence of 5.8% and 3.2%, respectively, based on whole pen serum ELISA results. Variance components models for quantitative real-time PCR (qPCR) results showed samples collected from different pens on different dairies accounted for greater variablitiy in MAP concentration (65%), while samples collected by different collectors had the least variability (0.1%). In contrast, variability in MAP concentration in environmental samples collected on different days had 25% variability. The intraclass correlation coefficient showed high reliability (93%) of environmental sampling simultaneously by different collectors. In contrast, the reliability of environmental sampling at different days was 65%, which was similar to the reliability for sampling by different collectors on different days. Investigators can expect high reliability when employing the new environmental sampling protocol along with qPCR testing of environmental samples from drylot pens
Recommended from our members
Bayesian estimation of diagnostic accuracy of fecal culture and PCR-based tests for the detection of Salmonella enterica in California cull dairy cattle.
Epidemiological studies of low prevalence disease problems are often hindered by the high cost of diagnostic testing. The objective of this study was to evaluate PCR screening of both individual and pooled fecal samples from culled dairy cows for the invA gene of Salmonella followed by culture to determine if the sensitivity and specificity were comparable to the results from traditional culture methods applied to individual samples. Cows from six different dairies were sampled in all four seasons. A total of 240 individual cow fecal samples, 24 fecal pools and 24 pools of 24-hour tetrathionate enrichment broth were tested. Diagnostic sensitivity of PCR screening followed by culture of PCR positive or indeterminate samples (i.e PCR-CUL method) was lower than that of culture (CUL) when applied to individual fecal samples (94.8%, 99.5%), however the specificity was comparable (99.6% and 97.7% respectively). For pools of five fecal samples and pools of five, 24 h tetrathionate broth samples, the specificity of both tests were comparable (∼98%); however, their sensitivity was only comparable in pooled fecal samples (∼93%) but greater for culture compared to PCR-CUL in pooled broth samples (∼99% versus ∼93%). Compared to culture results from testing of individual fecal samples, testing pooled fecal samples by culture had a relative sensitivity of 74% and relative specificity of 96%, testing pooled fecal samples by PCR-CUL resulted in relative sensitivity of 90% and relative specificity of 96%. Testing of pooled 24-hour enrichment broth by PCR-CUL increased the relative sensitivity and specificity to 100%. PCR testing followed by culture of positive or indeterminate samples is a time saving alternative to traditional methods. In addition, pooling of samples may be a useful method for decreasing cost if study aims can accommodate a moderate loss of relative sensitivity
Epidemiology ofSalmonellasp. in California cull dairy cattle: prevalence of fecal shedding and diagnostic accuracy of pooled enriched broth culture of fecal samples
Background The primary objective of this cross-sectional study was to estimate the crude, seasonal and cull-reason stratified prevalence of Salmonella fecal shedding in cull dairy cattle on seven California dairies. A secondary objective was to estimate and compare the relative sensitivity (Se) and specificity (Sp) for pools of 5 and 10 enriched broth cultures of fecal samples for Salmonella sp. detection. Methods Seven dairy farms located in the San Joaquin Valley of California were identified and enrolled in the study as a convenience sample. Cull cows were identified for fecal sampling once during each season between 2014 and 2015, specifically during spring, summer, fall, and winter, and 10 cows were randomly selected for fecal sampling at the day of their sale. In addition, study personnel completed a survey based on responses of the herd manager to questions related to the previous four month’s herd management. Fecal samples were frozen until testing for Salmonella. After overnight enrichment in liquid broth, pools of enrichment broth (EBP) were created for 5 and 10 samples. All individual and pooled broths were cultured on selective media with putative Salmonella colonies confirmed by biochemical testing before being serogrouped and serotyped. Results A total of 249 cull cows were enrolled into the study and their fecal samples tested for Salmonella. The survey-weighted period prevalence of fecal shedding of all Salmonella sp. in the cull cow samples across all study herds and the entire study period was 3.42% (N = 249; SE 1.07). The within herd prevalence of Salmonella shed in feces did not differ over the four study seasons (P = 0.074). The Se of culture of EBP of five samples was 62.5% (SE = 17.12), which was not statistically different from the Se of culture of EBP of 10 (37.5%, SE = 17.12, P = 0.48). The Sp of culture of EBP of five samples was 95.24% (SE = 3.29) and for pools of 10 samples was 100.00% (SE = 0). There was no statistical difference between the culture relative specificities of EBP of 5 and 10 (P > 0.99). Discussion Our study showed a numerically higher prevalence of Salmonella shedding in the summer, although the results were not significant, most likely due to a lack of power from the small sample size. A higher prevalence in summer months may be related to heat stress. To detect Salmonella, investigators may expect a 62.5% sensitivity for culture of EBP of five, relative to individual fecal sample enrichment and culture. In contrast, culture of EBP of 10 samples resulted in a numerically lower Se. Culture of EBP of size 5 or 10 samples, given similar prevalence and limit of detection, can be expected to yield specificities of 95 and 100%, respectively
Diagnostics in animal health: How UC helps exclude and minimize impact of livestock pathogens
UC has a wide reach in the agriculture sector of the California economy and is well recognized for research expertise in plant diseases. Less well known is the role UC plays in animal agriculture. In 2012, the California Animal Health and Food Safety lab at UC Davis performed nearly 980,000 tests on samples from sick livestock, including cattle, horses, pigs, chickens and turkeys. The lab is prepared to respond rapidly to any disease outbreak or identification of a foreign disease. Researchers at the School of Veterinary Medicine at UC Davis are testing novel subunit vaccines to prevent pinkeye in cattle; UC ANR specialists and advisors and the staff at the Sierra Foothill Research and Extension Center were key to the development of best management practices that landowners and resource managers are using to protect their herds and public water sources against the parasite Cryptosporidium parvum; and UC veterinary scientists are part of a large team of experts, including state and federal agencies, determined to combat the endemic bluetongue virus, which can affect the state's exports
Recommended from our members
Bovine cardiac mesothelial hyperplasia: a common incidental finding in adult cattle.
Cardiac mesothelial hyperplasia forming pale plaque lesions on the epicardial surface is a common incidental finding in the hearts of aged humans. A similar phenomenon with a more papillary appearance has also been reported as an incidental finding in dogs and mice. These lesions are believed to occur in response to friction between the epicardium and overlying pericardium. We investigated this lesion in adult cattle, a phenomenon that has been associated with bovine leukemia virus infection and epicardial lymphoma. We examined 73 hearts from adult cattle, predominantly of dairy breeds: 53 from a rendering facility and 20 from a state diagnostic laboratory. Cardiac mesothelial hyperplasia was much more prevalent in cattle than in other reported species (97% of examined hearts). The most common distribution was overlying the great vessels in a dark red papillary pattern. Cardiac mesothelial hyperplasia was also variably observed on all 4 cardiac chambers and the pericardium. Occasionally these lesions took on a smooth plaque-like appearance resembling those observed in humans. The lesions varied from 0.25 cm2 to covering 90% of the epicardial surface. No association was observed between cardiac mesothelial hyperplasia and bovine leukemia virus infection or cardiac lymphoma. Cardiac mesothelial hyperplasia was a common incidental finding in bovine hearts that must be distinguished from neoplasia and acute or chronic inflammation
Diagnostics in animal health: How UC helps exclude and minimize impact of livestock pathogens
UC has a wide reach in the agriculture sector of the California economy and is well recognized for research expertise in plant diseases. Less well known is the role UC plays in animal agriculture. In 2012, the California Animal Health and Food Safety lab at UC Davis performed nearly 980,000 tests on samples from sick livestock, including cattle, horses, pigs, chickens and turkeys. The lab is prepared to respond rapidly to any disease outbreak or identification of a foreign disease. Researchers at the School of Veterinary Medicine at UC Davis are testing novel subunit vaccines to prevent pinkeye in cattle; UC ANR specialists and advisors and the staff at the Sierra Foothill Research and Extension Center were key to the development of best management practices that landowners and resource managers are using to protect their herds and public water sources against the parasite Cryptosporidium parvum; and UC veterinary scientists are part of a large team of experts, including state and federal agencies, determined to combat the endemic bluetongue virus, which can affect the state's exports
Use of Antibiotic Susceptibility Patterns and Pulsed-Field Gel Electrophoresis To Compare Historic and Contemporary Isolates of Multi-Drug-Resistant Salmonella enterica subsp. enterica Serovar Newport
Recently, multi-drug-resistant (MDR) Salmonella enterica subspecies enterica serovar Newport reemerged as a public and animal health problem. The antibiotic resistance of 198 isolates and the pulsed-field gel electrophoresis patterns (PFGE) of 139 isolates were determined. Serovar Newport isolates collected between 1988 and 2001 were included in the study. One hundred seventy-eight isolates were collected from the San Joaquin valley in California and came from dairy cattle clinical samples, human clinical samples, bulk tank milk samples, fecal samples from preweaned calves, and waterways. Twenty clinical isolates from humans from various regions of the United States were also included in the study. Resistance to 18 antibiotics was determined using a disk diffusion assay. PFGE patterns were determined using a single enzyme (XbaI). The PFGE and antibiogram patterns were described using cluster analysis. Although the antibiotic resistance patterns of historic (1988 to 1995) and contemporary (1999 to 2001) isolates were similar, the contemporary isolates differed from the historic isolates by being resistant to cephalosporins and florfenicol and in their general sensitivity to kanamycin and neomycin. With few exceptions, the contemporary isolates clustered together and were clearly separated from the historic isolates. One PFGE-antibiogram cluster combination was predominant for the recent isolates, which were taken from human samples from all parts of the United States, as well as in the isolates from California, indicating a rapid dissemination of this phenotypic strain. The data are consistent with the hypothesis that the reemergence of MDR serovar Newport is not simply an acquisition of further antibiotic resistance genes by the historic isolates but reflects a different genetic lineage