89 research outputs found
Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria Completion of the primary structure of the complex?
AbstractThe amino acid sequences of two nuclear-encoded subunits of complex I from bovine heart mitochondria have been determined. Both proteins have an apparent molecular weight of 14.5 kDa and their N-α-amino groups are acetylated. They are known as subunits B14.5a and B14.5b. Neither protein is evidently related to any known protein and their functions are obscure. A total of 34 nuclear-encoded subunits of bovine complex 1 have now been sequenced and it is thought that the primary structure of the complex is now complete, although with such a complicated structure it is difficult to be certain that there are no other subunits remaining to be sequenced. Seven additional hydrophobic subunits of the enzyme are encoded in mitochondrial DNA, and therefore bovine heart complex I is an assembly of about 41 different proteins. If it is assumed that there is one copy of each protein in the assembly, these polypeptides contain 7,955 amino acids in their sequences, more than are found in the Escherichia coli ribosome, which contains 7,336 amino acids in its 32 polypeptides
Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation
AbstractThe membrane fusion potential of influenza HA, like many viral membrane-fusion glycoproteins, is generated by proteolytic cleavage of a biosynthetic precursor. The three-dimensional structure of ectodomain of the precursor HA0 has been determined and compared with that of cleaved HA. The cleavage site is a prominent surface loop adjacent to a novel cavity; cleavage results in structural rearrangements in which the nonpolar amino acids near the new amino terminus bury ionizable residues in the cavity that are implicated in the low-pH-induced conformational change. Amino acid insertions at the cleavage site in HAs of virulent avian viruses and those of viruses isolated from the recent severe outbreak of influenza in humans in Hong Kong would extend this surface loop, facilitating intracellular cleavage
Studies of the Binding Properties of Influenza Hemagglutinin Receptor-Site Mutants
AbstractSite-specific mutations have been made in the influenza hemagglutinin (HA) receptor binding site to assess the contribution of individual amino acid residues to receptor recognition. Screening of mutant HAs, expressed using recombinant vaccinia virus-infected cells, for their abilities to bind human erythrocytes indicated that substitutions involving conserved residues Y98F, H183F, and L194A severely restricted binding and that the substitution W153A prevented cell surface expression of HA. Mutation of residues E190 and S228 that are in positions to form hydrogen bonds with the 9-OH of sialic acid appeared to increase erythrocyte binding slightly, as did the substitution G225R. Substitutions of other residues that are directly or indirectly involved in receptor binding, S136T, S136A, Y195F, G225D, and L226P, had intermediate effects on binding between these two extremes. Estimates of changes in receptor binding specificity based on inhibition of binding to erythrocytes by nonimmune horse sera indicated that mutants G225R and L226P, unlike wild-type HA, were not inhibited; Y195F and G225D mutants were, like wild type, inhibited; and erythrocyte binding by mutants S136A, S136T, E190A, and S228G was only partially inhibited. Viruses containing mutant HAs Y98F, S136T, G225D, and S228G that cover the range of erythrocyte binding properties observed were also constructed by transfection. All four transfectant viruses replicated in MDCK cells and embryonated hens' eggs as efficiently as wild-type X-31 virus, although the Y98F mutant virus was unable to agglutinate erythrocytes. Mutant MDCK cells that have reduced levels of cell surface sialic acids were susceptible to infection by S136T, G225D, and S228G transfectant viruses and by wild type but not by the Y98F transfectant virus
High level expression of soluble glycoproteins in the allantoic fluid of embryonated chicken eggs using a Sendai virus minigenome system
BACKGROUND: Embryonated chicken eggs have been used since the mid-20th century to grow a wide range of animal viruses to high titers. However, eggs have found so far only limited use in the production of recombinant proteins. We now describe a system, based on a Sendai virus minigenome, to produce large amounts of heterologous viral glycoproteins in the allantoic cavity of embryonated eggs. RESULTS: Soluble forms of human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) fusion (F) proteins, devoid of their transmembrane and cytoplasmic domains, were produced in allantoic fluids using the Sendai minigenome system. The first step was rescuing in cell cultures Sendai virus minigenomes encoding the proteins of interest, with the help of wild type Sendai virus. The second step was propagating such recombinant defective viruses, together with the helper virus, in the allantoic cavity of chicken embryonated eggs, and passage to optimize protein production. When compared with the production of the same proteins in the culture supernatant of cells infected with vaccinia recombinants, the yield in the allantoic fluid was 5–10 fold higher. Mutant forms of these soluble proteins were easily constructed by site-directed mutagenesis and expressed in eggs using the same approach. CONCLUSION: The simplicity and economy of the Sendai minigenome system, together with the high yield achieved in the allantoic fluid of eggs, makes it an attractive method to express soluble glycoproteins aimed for structural studies
H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis
Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, KMvalues for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (KI) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodate
Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody.
H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo. As a consequence, this antibody may be suitable for anti-H5 therapy and as a component of stockpiles, together with other antiviral agents, for health authorities to use if an appropriate vaccine was not available. Our mutation and structural analyses indicate that the antibody recognizes a relatively conserved site near the membrane distal tip of HA, near to, but distinct from, the receptor-binding site. Our analyses also suggest that the mechanism of infectivity neutralization involves prevention of receptor recognition as a result of steric hindrance by the Fc part of the antibody. Structural analyses by EM indicate that three Fab fragments are bound to each HA trimer. The structure revealed by X-ray crystallography is of an HA monomer bound by one Fab. The monomer has some similarities to HA in the fusion pH conformation, and the monomer's formation, which results from the presence of isopropanol in the crystallization solvent, contributes to considerations of the process of change in conformation required for membrane fusion
Influenza hemagglutinin membrane anchor
Viruses with membranes fuse them with cellular membranes, to transfer their genomes into cells at the beginning of infection. For Influenza virus, the membrane glycoprotein involved in fusion is the hemagglutinin (HA), the 3D structure of which is known from X-ray crystallographic studies. The soluble ectodomain fragments used in these studies lacked the “membrane anchor” portion of the molecule. Since this region has a role in membrane fusion, we have determined its structure by analyzing the intact, full-length molecule in a detergent micelle, using cryo-EM. We have also compared the structures of full-length HA−detergent micelles with full-length HA−Fab complex detergent micelles, to describe an infectivity-neutralizing monoclonal Fab that binds near the ectodomain membrane anchor junction. We determine a high- resolution HA structure which compares favorably in detail with the structure of the ectodomain seen by X-ray crystallography; we detect, clearly, all five carbohydrate side chains of HA; and we find that the ectodomain is joined to the membrane anchor by flexible, eight-residue-long, linkers. The linkers extend into the detergent micelle to join a central triple-helical structure that is a major component of the membrane anchor
Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells
Background: The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings: Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions: The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens
Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments.
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances
Exome Sequencing and the Management of Neurometabolic Disorders
BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level.
METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes.
RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%).
CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)
- …