36 research outputs found
Vector composition, abundance, biting patterns and malaria transmission intensity in Madang, Papua New Guinea: assessment after 7 years of an LLIN-based malaria control programme
Background: A malaria control programme based on distribution of long-lasting insecticidal bed nets (LLINs) and artemisinin combination therapy began in Papua New Guinea in 2009. After implementation of the programme, substantial reductions in vector abundance and malaria transmission intensity occurred. The research reported here investigated whether these reductions remained after seven years of sustained effort.
Methods: All-night (18:00 to 06:00) mosquito collections were conducted using human landing catches and barrier screen methods in four villages of Madang Province between September 2016 and March 2017. Anopheles species identification and sporozoite infection with Plasmodium vivax and Plasmodium falciparum were determined with molecular methods. Vector composition was expressed as the relative proportion of different species in villages, and vector abundance was quantified as the number of mosquitoes per barrier screen-night and per person-night. Transmission intensity was quantified as the number of sporozoite-infective vector bites per person-night.
Results: Five Anopheles species were present, but vector composition varied greatly among villages. Anopheles koliensis, a strongly anthropophilic species was the most prevalent in Bulal, Matukar and Wasab villages, constituting 63.7–73.8% of all Anopheles, but in Megiar Anopheles farauti was the most prevalent species (97.6%). Vector abundance varied among villages (ranging from 2.8 to 72.3 Anopheles per screen-night and 2.2–31.1 Anopheles per person-night), and spatially within villages. Malaria transmission intensity varied among the villages, with values ranging from 0.03 to 0.5 infective Anopheles bites per person-night. Most (54.1–75.1%) of the Anopheles bites occurred outdoors, with a substantial proportion (25.5–50.8%) occurring before 22:00.
Conclusion: The estimates of vector abundance and transmission intensity in the current study were comparable to or higher than estimates in the same villages in 2010–2012, indicating impeded programme effectiveness. Outdoor and early biting behaviours of vectors are some of the likely explanatory factors. Heterogeneity in vector composition, abundance and distribution among and within villages challenge malaria control programmes and must be considered when planning them
Plasticity of host selection by malaria vectors of Papua New Guinea
Background
Host selection is an important determinant of vectorial capacity because malaria transmission increases when mosquitoes feed more on humans than non-humans. Host selection also affects the outcome of long-lasting insecticidal nets (LLIN). Despite the recent nationwide implementation of LLIN-based malaria control program in Papua New Guinea (PNG), little is known about the host selection of the local Anopheles vectors. This study investigated the host selection of Anopheles vectors in PNG.
Methods
Blood-engorged mosquitoes were sampled using the barrier screen method and blood meals analyzed for vertebrate host source with PCR-amplification of the mitochondrial cytochrome b gene. Abundance of common hosts was estimated in surveys. The test of homogeneity of proportions and the Manly resource selection ratio were used to determine if hosts were selected in proportion to their abundance.
Results
Two thousand four hundred and forty blood fed Anopheles females of seven species were sampled from five villages in Madang, PNG. Of 2,142 samples tested, 2,061 (96.2%) yielded a definitive host source; all were human, pig, or dog. Hosts were not selected in proportion to their abundance, but rather were under-selected or over-selected by the mosquitoes. Four species, Anopheles farauti (sensu stricto) (s.s.), Anopheles punctulatus (s.s.), Anopheles farauti no. 4 and Anopheles longirostris, over-selected humans in villages with low LLIN usage, but over-selected pigs in villages with high LLIN usage. Anopheles koliensis consistently over-selected humans despite high LLIN usage, and Anopheles bancroftii over-selected pigs.
Conclusions
The plasticity of host selection of an Anopheles species depends on its opportunistic, anthropophilic or zoophilic behavior, and on the extent of host availability and LLIN usage where the mosquitoes forage for hosts. The high anthropophily of An. koliensis increases the likelihood of contacting the LLIN inside houses. This allows its population size to be reduced to levels insufficient to support transmission. In contrast, by feeding on alternative hosts the likelihood of the opportunistic species to contact LLIN is lower, making them difficult to control. By maintaining high population size, the proportion that feed on humans outdoors can sustain residual transmission despite high LLIN usage in the village
Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure
Behavioral resilience in mosquitoes poses a significant challenge to mosquito control. Although behavior changes in anopheline vectors have been reported over the last decade, there are no empirical data to suggest they compromise the efficacy of vector control in reducing malaria transmission.; In this study, we quantified human exposure to both bites and infective bites of a major malaria vector in Papua New Guinea over the course of 4 years surrounding nationwide bednet distribution. We also quantified malaria infection prevalence in the human population during the same time period.; We observed a shift in mosquito biting to earlier hours of the evening, before individuals are indoors and protected by bednets, followed by a return to preintervention biting rates. As a result, net users and non-net users experienced higher levels of transmission than before the intervention. The personal protection provided by a bednet decreased over the study period and was lowest in the adult population, who may be an important reservoir for transmission. Malaria prevalence decreased in only 1 of 3 study villages after the distribution.; This study highlights the necessity of validating and deploying vector control measures targeting outdoor exposure to control and eliminate malaria
Genetic differentiation and bottleneck effects in the malaria vectors Anopheles farauti and Anopheles punctulatus after an LLIN‐based vector control program in Papua New Guinea
Implementation of long‐lasting insecticide‐treated net (LLIN) programs to control human malaria transmission leads to substantial reductions in the abundance of Anopheles mosquitoes, but the impact on the population genetic structure of the malaria vectors is poorly known, nor has it been investigated in Papua New Guinea, where malaria is highly endemic and where several species of Anopheles have vector roles. Here, we applied Wright's F‐statistic, analysis of molecular variance, Bayesian structure analysis, and discriminant analysis of principle components to microsatellite genotype data to analyze the population genetic structure of Anopheles farauti between and within the northern and southern lowland plains and of Anopheles punctulatus within the northern plain of Papua New Guinea after such a program. Bottleneck effects in the two malaria vectors were analyzed using Luikart and Cornuet's tests of heterozygosity. A large, panmictic population of An. punctulatus pre‐LLIN program diverged into two subregional populations corresponding to Madang and East Sepik provinces post‐LLIN distribution and experienced a genetic bottleneck during this process. By contrast, the An. farauti population existed as two regional populations isolated by mountain ranges pre‐LLIN, a genetic structure that persisted after the distribution of LLINs with no further geographic differentiation nor evidence of a genetic bottleneck. These findings show the differential response of populations of different vector species to interventions, which has implications for program sustainability and gene flow
Investigating differences in village-level heterogeneity of malaria infection and household risk factors in Papua New Guinea
Malaria risk is highly heterogeneous. Understanding village and household-level spatial heterogeneity of malaria risk can support a transition to spatially targeted interventions for malaria elimination. This analysis uses data from cross-sectional prevalence surveys conducted in 2014 and 2016 in two villages (Megiar and Mirap) in Papua New Guinea. Generalised additive modelling was used to characterise spatial heterogeneity of malaria risk and investigate the contribution of individual, household and environmental-level risk factors. Following a period of declining malaria prevalence, the prevalence of P. falciparum increased from 11.4 to 19.1% in Megiar and 12.3 to 28.3% in Mirap between 2014 and 2016, with focal hotspots observed in these villages in 2014 and expanding in 2016. Prevalence of P. vivax was similar in both years (20.6% and 18.3% in Megiar, 22.1% and 23.4% in Mirap) and spatial risk heterogeneity was less apparent compared to P. falciparum. Within-village hotspots varied by Plasmodium species across time and between villages. In Megiar, the adjusted odds ratio (AOR) of infection could be partially explained by household factors that increase risk of vector exposure, such as collecting outdoor surface water as a main source of water. In Mirap, increased AOR overlapped with proximity to densely vegetated areas of the village. The identification of household and environmental factors associated with increased spatial risk may serve as useful indicators of transmission hotspots and inform the development of tailored approaches for malaria control
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Mosquito-Parasite Interactions Can Shape Filariasis Transmission Dynamics and Impact Elimination Programs
The relationship between mosquito vectors and lymphatic filariasis (LF) parasites can result in a range of transmission outcomes. Anophelines are generally characterized as poor vectors due to an inability to support development at low densities. However, it is important to understand the potential for transmission in natural vectors to maximize the success of elimination efforts. Primary vectors in Papua New Guinea (n = 1209) were dissected following exposure to microfilaremic blood (range 8–233 mf/20 ml). We examined density dependent and species-specific parasite prevalence, intensity and yield, barriers to parasite development as well as impacts on mosquito survival. We observed strikingly different parasite prevalence and yield among closely related species. Prevalence of infective stage larvae (L3s) ranged from 4.2% to 23.7% in An. punctulatus, 24.5% to 68.6% in An. farauti s.s. and 61.9% to 100% in An. hinesorum at low and high density exposures, respectively. Injection experiments revealed the greatest barrier to parasite development involved passage from the midgut into the hemocoel. The ratio of L3 to ingested mf at low densities was higher in An. hinesorum (yield = 1.0) and An. farauti s.s. (yield = 0.5) than has been reported in other anopheline vectors. There was a negative relationship between mosquito survival and bloodmeal mf density. In An. farauti s.s., increased parasite yield and survival at low densities suggest greater competence at low microfilaremias. In Papua New Guinea the likelihood of transmission will be strongly influenced by vector composition and changes in the mf reservoir as a result of elimination efforts. Global elimination efforts will be strengthened by the knowledge of transmission potential in the context of current control measures
Blood-feeding patterns of Anopheles vectors of human malaria in Malawi: implications for malaria transmission and effectiveness of LLIN interventions
Abstract
Background
Access to human hosts by Anopheles mosquitoes is a key determinant of vectorial capacity for malaria, but it can be limited by use of long-lasting insecticidal nets (LLINs). In Malawi, pyrethroid-treated LLINs with and without the synergist piperonyl butoxide (PBO) were distributed to control malaria. This study investigated the blood-feeding patterns of malaria vectors and whether LLINs containing pyrethroid and PBO led to a reduction of human blood feeding than those containing only pyrethroids.
Methods
Mosquitoes were sampled inside houses from May 2019 through April 2020 by aspiration, pyrethrum spray catch, and light trap methods in two sites. One site (Namanolo, Balaka district) had LLINs containing only pyrethroids whereas the other (Ntaja, Machinga district) had LLINs with both pyrethroids and PBO. Anopheles species, their blood-meal host, and infection with Plasmodium falciparum were determined using PCR methods.
Results
A total of 6585 female Anopheles were sampled in 203 houses. Of these, 633 (9.6%) were blood-fed mosquitoes comprising of 279 (44.1%) Anopheles arabiensis, 103 (16.3%) Anopheles gambiae 212 (33.5), Anopheles funestus, 2 (0.3%), Anopheles parensis and 37 (5.8%) were unidentified Anopheles spp. Blood meal hosts were successfully identified for 85.5% (n = 541) of the blood-fed mosquitoes, of which 436 (81.0%) were human blood meals, 28 (5.2%) were goats, 11 (2.0%) were dogs, 60 (11.1%) were mixed goat-human blood meals, 5 (0.9%) were dog–human, and 1 was a mixed dog-goat. Human blood index (fraction of blood meals that were humans) was significantly higher in Namanolo (0.96) than Ntaja (0.89). Even though human blood index was high, goats were over-selected than humans after accounting for relative abundance of both hosts. The number of infectious Anopheles bites per person-year was 44 in Namanolo and 22 in Ntaja.
Conclusion
Although LLINs with PBO PBO may have reduced human blood feeding, access to humans was extremely high despite high LLIN ownership and usage rates in both sites. This finding could explain persistently high rates of malaria infections in Malawi. However, this study had one village for each net type, thus the observed differences may have been a result of other factors present in each village.http://deepblue.lib.umich.edu/bitstream/2027.42/173705/1/12936_2022_Article_4089.pd
Species abundance, composition, and nocturnal activity of female Anopheles (Diptera: Culicidae) in malaria-endemic villages of Papua New Guinea: assessment with barrier screen sampling
Abstract Background Community composition of Anopheles mosquitoes, and their host-seeking and peridomestic behaviour, are important factors affecting malaria transmission. In this study, barrier screen sampling was used to investigate species composition, abundance, and nocturnal activity of Anopheles populations in villages of Papua New Guinea. Methods Mosquitoes were sampled from 6 pm to 6 am in five villages from 2012 to 2016. The barrier screens were positioned between the village houses and the perimeter of villages where cultivated and wild vegetation (“the bush”) grew thickly. Female Anopheles that rested on either village or bush side of the barrier screens, as they commuted into and out of the villages, were captured. Similarity in species composition among villages was assessed. Mosquitoes captured on village and bush sides of the barrier screens were sorted by feeding status and by hour of collection, and their numbers were compared using negative binomial generalized linear models. Results Females of seven Anopheles species were present in the sample. Species richness ranged from four to six species per village, but relative abundance was highly uneven within and between villages, and community composition was similar for two pairs of villages and highly dissimilar in a fifth. For most Anopheles populations, more unfed than blood-fed mosquitoes were collected from the barrier screens. More blood-fed mosquitoes were found on the side of the barrier screens facing the village and relatively more unfed ones on the bush side, suggesting commuting behaviour of unfed host-seeking females into the villages from nearby bush and commuting of blood-fed females away from villages towards the bush. For most populations, the majority of host-seeking mosquitoes arrived in the village before midnight when people were active and unprotected from the mosquitoes by bed nets. Conclusion The uneven distribution of Anopheles species among villages, with each site dominated by different species, even among nearby villages, emphasizes the importance of vector heterogeneity in local malaria transmission and control. Yet, for most species, nocturnal activity patterns of village entry and host seeking predominantly occurred before midnight indicating common behaviours across species and populations relative to human risk of exposure to Anopheles bites