22,848 research outputs found
New Fe II energy levels from stellar spectra
The spectra of B-type and early A-type stars show numerous unidentified lines
in the whole optical range, especially in the 5100 - 5400 A interval. Because
Fe II transitions to high energy levels should be observed in this region, we
used semiempirical predicted wavelengths and gf-values of Fe II to identify
unknown lines. Semiempirical line data for Fe II computed by Kurucz are used to
synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000.
We determined a total of 109 new 4f levels for Fe II with energies ranging from
122324 cm^-1 to 128110 cm^-1. They belong to the Fe II subconfigurations
3d^6(^3P)4f (10 levels), 3d^6(^3H)4f (36 levels), 3d^6(^3F)4f (37 levels), and
3d^6(^3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7
levels), and 6d (4 levels) configurations. The new levels have allowed us to
identify more than 50% of the previously unidentified lines of HR 6000 in the
wavelength region 3800-8000 A. Tables listing the new energy levels are given
in the paper; tables listing the spectral lines with loggf>/=-1.5 that are
transitions to the 4f energy levels are given in the Online Material. These new
levels produce 18000 lines throughout the spectrum from the ultraviolet to the
infrared.Comment: Paper accepted by A&A for publicatio
Nonclassical microwave radiation from the dynamical Casimir effect
We investigate quantum correlations in microwave radiation produced by the
dynamical Casimir effect in a superconducting waveguide terminated and
modulated by a superconducting quantum interference device. We apply
nonclassicality tests and evaluate the entanglement for the predicted field
states. For realistic circuit parameters, including thermal background noise,
the results indicate that the produced radiation can be strictly nonclassical
and can have a measurable amount of intermode entanglement. If measured
experimentally, these nonclassicalilty indicators could give further evidence
of the quantum nature of the dynamical Casimir radiation in these circuits.Comment: 5 pages, 3 figure
Almost sure multifractal spectrum for the tip of an SLE curve
The tip multifractal spectrum of a two-dimensional curve is one way to
describe the behavior of the uniformizing conformal map of the complement near
the tip. We give the tip multifractal spectrum for a Schramm-Loewner evolution
(SLE) curve, we prove that the spectrum is valid with probability one, and we
give applications to the scaling of harmonic measure at the tip.Comment: 43 pages, 2 figure
The Theory Behind TheoryMine
Abstract. We describe the technology behind the TheoryMine novelty gift company, which sells the rights to name novel mathematical theorems. A tower of four computer systems is used to generate recursive theories, then to speculate conjectures in those theories and then to prove these conjectures. All stages of the process are entirely automatic. The process guarantees large numbers of sound, novel theorems of some intrinsic merit.
Revisited abundance diagnostics in quasars: Fe II/Mg II ratios
Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and
resonance emission line complex of Mg II at 2800 A are prominent features in
quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed
as means to measure the buildup of the Fe abundance relative to that of the
alpha-elements C, N, O, Ne and Mg as a function of redshift. The current
observed ratios show large scatter and no obvious dependence on redshift. Thus,
it remains unresolved whether a dependence on redshift exists and whether the
observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We
have used our new 830-level model atom for Fe+ in photoionization calculations,
reproducing the physical conditions in the broad line regions of quasars. This
modeling reveals that interpretations of high values of Fe II UV/ Mg II are
sensitive not only to Fe and Mg abundance, but also to other factors such as
microturbulence, density, and properties of the radiation field. We find that
the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission
ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be
used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios
for the physical conditions relevant to the broad-line regions (BLRs) of
quasars. This has extreme importance for quasar observations with the Hubble
Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in
pres
Orthogonality Effects in Relativistic Models of Nucleon Knockout Reactions
We study the effect of wave function orthogonality in the relativistic
treatment of the nucleon removal reactions (gamma, p) and (e, e' p). The
continuum wave function describing the outgoing nucleon is made orthogonal to
the relevant bound states using the Gram-Schmidt procedure. This procedure has
the advantage of preserving the asymptotic character of the continuum wave
function and hence the elastic observables are unaffected. The orthogonality
effects are found to be negligible for (e, e' p) reactions for missing momenta
up to 700 MeV/c. This holds true for both parallel and perpendicular
kinematics. By contrast the orthogonalization of the wave functions appears to
have a more pronounced effect in the case of (gamma, p) reactions. We find that
the orthogonality effect can be significant in this case particularly for large
angles. Polarization of the outgoing protons and photon asymmetry show more
sensitivity than the cross sections. If the orthogonality condition is imposed
solely on this one hole state the effects are usually smaller.Comment: LaTeX, 7 postscript figure
Measuring Technology Achievement of Nations and the Capacity to Participate in the Network Age
human development, democracy
The alpha-gamma transition of Cerium is entropy-driven
We emphasize, on the basis of experimental data and theoretical calculations,
that the entropic stabilization of the gamma-phase is the main driving force of
the alpha-gamma transition of cerium in a wide temperature range below the
critical point. Using a formulation of the total energy as a functional of the
local density and of the f-orbital local Green's functions, we perform
dynamical mean-field theory calculations within a new implementation based on
the multiple LMTO method, which allows to include semi-core states. Our results
are consistent with the experimental energy differences and with the
qualitative picture of an entropy-driven transition, while also confirming the
appearance of a stabilization energy of the alpha phase as the quasiparticle
Kondo resonance develops.Comment: 5 pages, 6 figure
- âŠ