72 research outputs found

    Describing the status of reproductive ageing simply and precisely: A reproductive ageing score based on three questions and validated with hormone levels

    Get PDF
    Equation 6. Quadratic logistic function approximating the function mu(B)(with age in years). Equation 1. Proportion of women who have regular menstruation for each number of reported menstruations in the last year(with period = number of periods per year, x = number of women answering "Yes" to the question: "Do you have regular periods?", y = number of women answering "No, they have been irregular for a few months" and z = number of women answering "No, my periods have stopped", e.g. x(11) = number of women reporting regular menstruation among those who report 11 menstruations in the last 12 months). Equation 5. Biquadratic exponential function mu(A)depending of the number of periods. Equation 3. Age modification by smoking and oophorectomy. Equation 2. Proportion of women whose menstruations have already stopped, for each reported year of age(with age = age in years, x = number of women answering "Yes" to the question: "Do you have regular periods?", y = number of women answering "No, they have been irregular for a few months", z = number of women answering "No, my periods have stopped", e.g. x(40) = number of women reporting regular menstruations among those who are 40 years old). Equation 7. Final formula to calculate the reproductive ageing score (RAS)(with period being the number of periods per year and age as the age in years, modified according to smoking status and oophorectomy). Objective Most women live to experience menopause and will spend 4-8 years transitioning from fertile age to full menstrual stop. Biologically, reproductive ageing is a continuous process, but by convention, it is defined categorically as pre-, peri- and postmenopause;categories that are sometimes supported by measurements of sex hormones in blood samples. We aimed to develop and validate a new tool, a reproductive ageing score (RAS), that could give a simple and yet precise description of the status of reproductive ageing, without hormone measurements, to be used by health professionals and researchers. Methods Questionnaire data on age, menstrual regularity and menstrual frequency was provided by the large multicentre population-based RHINE cohort. A continuous reproductive ageing score was developed from these variables, using techniques of fuzzy mathematics, to generate a decimal number ranging from 0.00 (nonmenopausal) to 1.00 (postmenopausal). The RAS was then validated with sex hormone measurements (follicle stimulating hormone and 17 beta-estradiol) and interview-data provided by the large population-based ECRHS cohort, using receiver-operating characteristics (ROC). Results The RAS, developed from questionnaire data of the RHINE cohort, defined with high precision and accuracy the menopausal status as confirmed by interview and hormone data in the ECRHS cohort. The area under the ROC curve was 0.91 (95% Confidence interval (CI): 0.90-0.93) to distinguish nonmenopausal women from peri- and postmenopausal women, and 0.85 (95% CI: 0.83-0.88) to distinguish postmenopausal women from nonmenopausal and perimenopausal women. Conclusions: The RAS provides a useful and valid tool for describing the status of reproductive ageing accurately, on a continuous scale from 0.00 to 1.00, based on simple questions and without requiring blood sampling. The score allows for a more precise differentiation than the conventional categorisation in pre-, peri- and postmenopause. This is useful for epidemiological research and clinical trials. Equation 4. The reproductive ageing score as an aggregation function of mu(A)and mu(B)

    Gastroesophageal reflux and snoring are related to asthma and respiratory symptoms : Results from a Nordic longitudinal population survey

    Get PDF
    Publisher Copyright: © 2023 The AuthorsAim: To study if individuals with nocturnal gastroesophageal reflux (nGER) and habitual snoring are more likely to develop asthma and respiratory symptoms (i.e. wheeze, cough, chest tightness, breathlessness) than those without these conditions, and if these associations are additive. Methods: We used data from the population-based prospective questionnaire study Respiratory Health in Northern Europe (RHINE) (11,024 participants), with data from 1999 and 2011. Participants with heartburn or belching after going to bed, at least 1 night/week, were considered to have nGER. Participants reporting loud snoring at least 3 nights/week were considered to have habitual snoring. Participants were grouped into four groups by their nGER and snoring status: “never”; “former”; “incident”; “persistent”. Incident respiratory symptoms were analyzed among participants without respective symptom at baseline. Results: Snoring and nGER were independently associated with incident asthma and respiratory symptoms. The risk of incident wheeze was increased in subjects with incident or persistent snoring (adjusted odds ratio (95 % CI): 1.44 (1.21–1.72)), nGER (2.18 (1.60–2.98)) and in those with both snoring and nGER (2.59 (1.83–3.65)). The risk of developing asthma was increased in subjects with incident or persistent snoring (1.44 (1.15–1.82)), nGER (1.99 (1.35–2.93)) and in those with both snoring and nGER (1.72 (1.06–2.77)). No significant interaction was found between snoring and nGER. A similar pattern was found for the incidence of all other respiratory symptoms studied, with the highest risk among those with both incident or persistent nGER and snoring. Conclusion: The risk of developing asthma and respiratory symptoms is increased among subjects with nGER and habitual snoring. These associations are independent of each other and confounding factors. Snoring and nGER together are additive on respiratory symptoms.Peer reviewe

    The effect of farming environment on asthma; time dependent or universal?

    Get PDF
    Funding Information: MJA holds investigator-initiated grants from Pfizer and Boehringer-Ingelheim for unrelated research. He has undertaken an unrelated consultancy for and received assistance with conference attendance from Sanofi. He has also received a speaker’s fee from GSK. The other authors have no conflicts of interest to declare that are relevant for the content of this article. Funding Information: The ECRHS/RHINE/RHINESSA study was supported by grants from The Faculty of Health, Aarhus University, Denmark (Project No. 240008), The Wood Dust Foundation (Project No. 444508795), The Danish Lung Association, the Swedish Heart and Lung Foundation, the Swedish Association Against Asthma and Allergy, the Swedish Association against Heart and Lung Disease, the Swedish Council for Working Life and Social Research, The Bror Hjerpstedt Foundation, The Vårdal Foundation for Health Care and Allergic Research, The Norwegian Research Council (Grant Nos. 214123, 230827/F20, 228174 and 135773/330), The Norwegian Asthma and Allergy Association, HelseVest Norway (Grant No. 911 631), The Icelandic Research Council, The University of Iceland Research Fund, The Icelandic GP’s Research Fund, The Estonian Science Foundation (Grant No. 4350), The Estonian Research Council (Grant No. PUT562), Melbourne University, National Health & Medical Research Council of Australia, SEPAR Spain, Sociedad Española de Neumologia y Cirugía Toracica Spain and Horizon2020 PHC1 (Grant No. 633212). For further information about funding sources, please consult www.rhinessa.net . Vivi Schlünssen and Cecilie Svanes are members of the COST BM1201 network. Publisher Copyright: © 2022, Springer Nature B.V.The increasing prevalence of asthma is linked to westernization and urbanization. Farm environments have been associated with a lower risk of asthma development. However, this may not be universal, as the association differs across birth cohorts and farming methods. The aim of this study was to investigate the associations of farm upbringing with asthma in different generations and at different times in history. The study population consisted of three generations: 13,868 subjects participating in the ECRHS in 2010, their 9,638 parents, and their 8,885 offspring participating in RHINESSA in 2013. Information on place of upbringing and self-reported ever asthma was provided via questionnaires. Logistic regression was performed including subgroup analysis stratified by generation and birthyear into ten-year-intervals. The prevalence of asthma increased from 8% among grandparents to 13% among parents and to 18% among offspring. An overall analysis showed an inverse association of farm upbringing on the risk of asthma (OR = 0.64; 95%CI 0.55–0.74). Subgroup analysis stratified into ten-year-intervals showed a tendency towards a more pronounced inverse association between growing up on a farm and asthma among subjects born in the 1940s (0.74; 0.48–1.12), 1950s (0.70; 0.54–0.90) and 1960s (0.70; 0.52–0.93). For subjects born in 1970 and thereafter this association appeared less consistent. While growing up on a farm was associated with a reduced risk of developing asthma in participants born between 1945–1999, this was mainly driven by generations born from 1945 to 1973.Peer reviewe

    A three-generation study on the association of tobacco smoking with asthma

    Get PDF
    Background: Mothers' smoking during pregnancy increases asthma risk in their offspring. There is some evidence that grandmothers' smoking may have a similar effect, and biological plausibility that fathers' smoking during adolescence may influence offspring's health through transmittable epigenetic changes in sperm precursor cells. We evaluated the three-generation associations of tobacco smoking with asthma. Methods: Between 2010 and 2013, at the European Community Respiratory Health Survey III clinical interview, 2233 mothers and 1964 fathers from 26 centres reported whether their offspring (aged <= 51 years) had ever had asthma and whether it had coexisted with nasal allergies or not. Mothers and fathers also provided information on their parents' (grandparents) and their own asthma, education and smoking history. Multilevel mediation models within a multicentre three-generation framework were fitted separately within the maternal (4666 offspring) and paternal (4192 offspring) lines. Results: Fathers' smoking before they were 15 [relative risk ratio (RRR) = 1.43, 95% confidence interval (CI): 1.01-2.01] and mothers' smoking during pregnancy (RRR = 1.27, 95% CI: 1.01-1.59) were associated with asthma without nasal allergies in their offspring. Grandmothers' smoking during pregnancy was associated with asthma in their daughters [odds ratio (OR) = 1.55, 95% CI: 1.17-2.06] and with asthma with nasal allergies in their grandchildren within the maternal line (RRR = 1.25, 95% CI: 1.02-1.55). Conclusions: Fathers' smoking during early adolescence and grandmothers' and mothers' smoking during pregnancy may independently increase asthma risk in offspring. Thus, risk factors for asthma should be sought in both parents and before conception

    Mortality prediction in chronic obstructive pulmonary disease comparing the GOLD 2015 and GOLD 2019 staging: a pooled analysis of individual patient data

    Get PDF
    In 2019, The Global Initiative for Chronic Obstructive Lung Disease (GOLD) modified the grading system for patients with COPD, creating 16 subgroups (1A–4D). As part of the COPD Cohorts Collaborative International Assessment (3CIA) initiative, we aim to compare the mortality prediction of the 2015 and 2019 COPD GOLD staging systems. We studied 17 139 COPD patients from the 3CIA study, selecting those with complete data. Patients were classified by the 2015 and 2019 GOLD ABCD systems, and we compared the predictive ability for 5-year mortality of both classifications. In total, 17 139 patients with COPD were enrolled in 22 cohorts from 11 countries between 2003 and 2017; 8823 of them had complete data and were analysed. Mean±sd age was 63.9±9.8 years and 62.9% were male. GOLD 2019 classified the patients in milder degrees of COPD. For both classifications, group D had higher mortality. 5-year mortality did not differ between groups B and C in GOLD 2015; in GOLD 2019, mortality was greater for group B than C. Patients classified as group A and B had better sensitivity and positive predictive value with the GOLD 2019 classification than GOLD 2015. GOLD 2015 had better sensitivity for group C and D than GOLD 2019. The area under the curve values for 5-year mortality were only 0.67 (95% CI 0.66–0.68) for GOLD 2015 and 0.65 (95% CI 0.63–0.66) for GOLD 2019

    External validation and recalculation of the CODEX index in COPD patients::A 3CIAplus cohort study

    Get PDF
    The CODEX index was developed and validated in patients hospitalized for COPD exacerbation to predict the risk of death and readmission within one year after discharge. Our study aimed to validate the CODEX index in a large external population of COPD patients with variable durations of follow-up. Additionally, we aimed to recalculate the thresholds of the CODEX index using the cutoffs of variables previously suggested in the 3CIA study (mCODEX). Individual data on 2,755 patients included in the COPD Cohorts Collaborative International Assessment Plus (3CIA+) were explored. A further two cohorts (ESMI AND EGARPOC-2) were added. To validate the CODEX index, the relationship between mortality and the CODEX index was assessed using cumulative/dynamic ROC curves at different follow-up periods, ranging from 3 months up to 10 years. Calibration was performed using univariate and multivariate Cox proportional hazard models and Hosmer-Lemeshow test. A total of 3,321 (87.8% males) patients were included with a mean ± SD age of 66.9 ± 10.5 years, and a median follow-up of 1,064 days (IQR 25–75% 426–1643), totaling 11,190 person-years. The CODEX index was statistically associated with mortality in the short- (≤3 months), medium- (≤1 year) and long-term (10 years), with an area under the curve of 0.72, 0.70 and 0.76, respectively. The mCODEX index performed better in the medium-term (<1 year) than the original CODEX, and similarly in the long-term. In conclusion, CODEX and mCODEX index are good predictors of mortality in patients with COPD, regardless of disease severity or duration of follow-up

    Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease

    Get PDF
    Background: External validations and comparisons of prognostic models or scores are a prerequisite for their use in routine clinical care but are lacking in most medical fields including chronic obstructive pulmonary disease (COPD). Our aim was to externally validate and concurrently compare prognostic scores for 3-year all-cause mortality in mostly multimorbid patients with COPD. Methods: We relied on 24 cohort studies of the COPD Cohorts Collaborative International Assessment consortium, corresponding to primary, secondary, and tertiary care in Europe, the Americas, and Japan. These studies include globally 15,762 patients with COPD (1871 deaths and 42,203 person years of follow-up). We used network meta-analysis adapted to multiple score comparison (MSC), following a frequentist two-stage approach; thus, we were able to compare all scores in a single analytical framework accounting for correlations among scores within cohorts. We assessed transitivity, heterogeneity, and inconsistency and provided a performance ranking of the prognostic scores. Results: Depending on data availability, between two and nine prognostic scores could be calculated for each cohort. The BODE score (body mass index, airflow obstruction, dyspnea, and exercise capacity) had a median area under the curve (AUC) of 0.679 [1st quartile-3rd quartile = 0.655-0.733] across cohorts. The ADO score (age, dyspnea, and airflow obstruction) showed the best performance for predicting mortality (difference AUC(ADO) - AUC(BODE) = 0.015 [95% confidence interval (CI) = - 0.002 to 0.032]; p = 0.08) followed by the updated BODE (AUCBODE updated - AUCBODE = 0.008 [95% CI = -0.005 to +0.022]; p = 0.23). The assumption of transitivity was not violated. Heterogeneity across direct comparisons was small, and we did not identify any local or global inconsistency. Conclusions: Our analyses showed best discriminatory performance for the ADO and updated BODE scores in patients with COPD. A limitation to be addressed in future studies is the extension of MSC network meta-analysis to measures of calibration. MSC network meta-analysis can be applied to prognostic scores in any medical field to identify the best scores, possibly paving the way for stratified medicine, public health, and research
    • …
    corecore