9 research outputs found

    Regulatory mechanisms of the acid stress response of Escherichia coli on the transcriptional, posttranscriptional and proteolytic level and their role in the kinetics of the system

    No full text
    Die Bedeutung posttranskriptionaler Regulation in Stressantwortsystemen und Differenzierungsprozessen in Prokaryoten wurde in den letzten Jahren immer mehr erkannt und erforscht. Die Suche nach noch unbekannten Proteolysesubstraten ist schwierig, da Regulatoren meist in geringen zellulĂ€ren Konzentrationen vorliegen und daher durch direkte FĂ€rbeverfahren nicht detektierbar sind. Daher wurde hier eine Methode zur Identifikation von Proteolyse-kontrollierten Regulatoren entwickelt mithilfe von Transkriptomanalyse von Proteasemutanten (lon und clpP) versus Wildtypzellen mit DNA-Microarrays in Escherichia coli. So war es möglich, mehrere Regulons zu bestimmen, welche differenziell in den Mutanten exprimiert werden, z.B. viele σS–abhĂ€ngige Gene und, besonders markant, Gene der SĂ€urestressantwort, welche im lon Hintergrund verstĂ€rkt und in der clpP Deletionsmutante vermindert transkribiert werden. Das Glutamat-abhĂ€ngige SĂ€ureresistenz-System, kodiert von gadA/BC, ist essentiell fĂŒr Escherichia coli, um die Passage durch den hochsauren Magen zu ĂŒberleben. Das System wird induziert bei niedrigem pH und bei Eintritt in die stationĂ€re Phase. Diese Regulation benötigt den Masterregulator σS, welcher die Synthese von GadE und GadX antreibt, die als essentieller, zentraler Aktivator bzw. als Modulator der Expression dieser Gene agieren (Weber et al., 2005). Ein anderer regulatorischer Schaltkreis beinhaltet das EvgA/S Zweikomponenten-System und YdeO, welche einen positiven Feedforward Loop bilden, um gadE zu regulieren (Foster, 2004). WĂ€hrend der Masterregulator σS unter proteolytischer Kontrolle steht (Hengge-Aronis, 2002), wurde in dieser Arbeit ermittelt, dass auch GadE auf den Ebenen der Expression und des Abbaus kontrolliert wird. In-vivo-Abbausexperimente zeigten, dass GadE konstitutiv von der Lon Protease abgebaut wird. Immunoblot- und Reportergenfusions-Daten bezeugen, dass der schnelle Anstieg des GadE- Gehaltes nach SĂ€ureshift aufgrund posttranskriptionaler Kontrolle stattfindet, die kleine RNA DsrA involvierend, wĂ€hrend die transkriptionale Induktion die langsame Reaktion auf andauernden SĂ€urestress liefert. Die Lon-vermittelte Proteolyse von GadE ist entscheidend fĂŒr die schnelle Termination der Antwort, gezeigt durch GadE Immunoblot und gadA/BC Northern Blots in lon+/-. Andere in- vivo-Abbauexperimente und GFP-Fusions-Studien weisen auf weitere Kandidaten proteolytischer Kontrolle, wie YdeO und GadW, innerhalb dieses Systemes hin, damit eine Basis fĂŒr zukĂŒnftige Studien schaffend. In Microarray-Studien und LacZ-Reportergenfusions-Studien wurden voneinander abgegrenzte Gengruppen identifiziert, die entweder von GadE und GadX zusammen oder nur von GadX kontrolliert werden. Die komplexe regulatorische Architektur konnte in den prinzipiellen Signalwegen aufgeklĂ€rt werden und ein Modell wurde entwickelt, welches die Regulationsmechanismen und Dynamiken des SĂ€urestressantwort- Netzwerkes integriert.The impact of posttranscriptional regulation in stress response systems and differentiation processes in prokaryotes are increasingly recognized and investigated in the recent years. The search for yet unknown regulatory substrates of proteolysis faces the difficulty that regulators are usually present in small amounts in bacteria, difficult to detect through direct staining procedures. Therefore a method for identifying regulators subjected to proteolysis was developed using transcriptomic analysis of protease mutants (lon and clpP) versus wildtype cells via DNA microarrays in Escherichia coli. This way it was possible to determine several regulons which are differentially expressed in the mutants, e.g. many σS-dependent genes, and, as the most prominent, genes of the acid stress response, which are upregulated in the lon background and downregulated in the clpP deletion strain. The Glutamate-dependent acid resistance system, encoded by the gadA/BC genes, is essential for Escherichia coli to survive the passage through the highly acidic stomach. The system is induced at low pH and during entry into stationary phase. This regulation involves the master regulator σS, which drives the expression of GadE and GadX, which act as the essential key activator and as a modulator, respectively, for the expression of these genes (Weber et al., 2005). Another transcriptional regulatory circuit implies the EvgA/S two-component system and YdeO, which form a positive feedforward loop regulating gadE (Foster, 2004). While the master regulator σS has long been known to be under proteolytic control (Hengge-Aronis, 2002), it is established here that also GadE is controlled both at the levels of expression and degradation. In-vivo degradation experiments show that GadE is constitutively degraded by the Lon protease. Immunoblot and reporter fusion data indicate that the rapid increase in GadE levels upon pH downshift is due to posttranscriptional regulation involving the small RNA DsrA, while transcriptional induction provides the slow reactions to enduring acid threat and during entry into stationary phase. Lon-mediated proteolysis of GadE is crucial for the rapid termination of the response shown by GadE immunoblot and gadA/BC Northern experiments in lon+/-. Other in-vivo degradation experiments and GFP fusion studies strongly support additional candidates for proteolytic control within this system, e.g. YdeO and GadW, providing a basis for future studies. In microarray studies and LacZ reportergen fusion studies we identified different groups of genes either controlled by GadE and GadX together or by GadX alone. The complex regulatory architecture could be assessed in the principal pathways and a model was developed, integrating the regulatory mechanisms and dynamics of the acid stress response network

    Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σ(S)-Dependent Genes, Promoters, and Sigma Factor Selectivity

    Get PDF
    The σ(S) (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, σ(S) is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of σ(S) and that σ(S) should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a σ(S) consensus promoter in silico. Moreover, our results suggest that σ(S)-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect σ(S) and/or σ(70) selectivity of many promoters. These observations indicate that certain modules of the σ(S)-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with σ(70) RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation
    corecore