26 research outputs found

    The Partisan Politics of New Social Risks in Advanced Postindustrial Democracies: Social Protection for Labor Market Outsiders

    Get PDF
    Advanced postindustrialization generates numerous challenges for the European social model. Central among these challenges is declining income, unstable employment, and inadequate training of semi- and unskilled workers. In this chapter, I assess the partisan basis of support for social policies that address the needs of these marginalized workers. I specifically consider the impacts of postindustrial cleavages among core constituencies of social democratic parties on the capacity of these parties to pursue inclusive social policies. I argue – and find support for in empirical analyses – that encompassing labor organization is the most important factor in strengthening the ability of left parties to build successful coalitions in support of outsider-friendly policies. I go beyond existing work on the topic by considering the full array of postindustrial cleavages facing left parties, by more fully elaborating why encompassing labor organization is crucial, and by considering a more complete set of measures of outsider policies than extant work. I compare my arguments and findings to important new work that stresses coalition building and partisan politics but minimizes the role of class organization

    Trunk muscle recruitment patterns in simulated precrash events

    Get PDF
    Objectives: To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Methods: Four subjects (1 female, 3 males) were accelerated at 0.55\ua0g (net Δv = 4.0\ua0m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2–L3 level. Muscle activity evoked by the perturbations was normalized by each muscle\u27s isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600\ua0ms after acceleration onset. Results: EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300\ua0 ms time points, the highest EMG amplitudes were observed during perturbations to the left (–90\ub0) and left rearward (–135\ub0). EMG activity diminished by 600\ua0ms for the anterior muscles, but not for the posterior muscles. Conclusions: These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios

    Gender gaps and reentry into entrepreneurial ecosystems after business failure

    Get PDF
    Despite the significant role played by serial entrepreneurs in the entrepreneurial process, we know little about group differences in reentry decisions after business failure. Using an ecosystems framework and stigma theory, we investigate the variance in gender gaps related to the reentry decisions of 8,171 entrepreneurs from 35 countries who experienced business failures. We find evidence of persisting gender gaps that vary across ecosystem framework conditions of public stigma of business failure and public fear of business failure. Our findings shed new light on ecosystem inefficiencies that arise from multiple interactions between entrepreneurs and institutions

    Cesium as a tracer for alkali processes in a circulating fluidized bed reactor

    No full text
    Addition of cesium salt has been used to study the removal rate, transport, and fate of alkali components during combustion of a mixture of wood chips and pellets in a 12-MW circulating fluidized bed (CFB) reactor. The alkali concentration in the flue gas was monitored with a recently developed aerosol mass spectrometer to provide on-line measurements of alkali-containing submicron particles. Cs2CO3 was fed with the fuel during a 5.5-h period, and the Cs concentration in the flue gas and in ash samples was followed for 70 h. Cesium addition resulted in a 1000-fold increase in Cs concentrations, followed by a slow decay of the concentrations during the following days. Cs was concluded to bind strongly to the fluidized bed material and to be removed with the bed ash or by slow release to the gas phase. The apparent rate coefficient for Cs removal from the bed was approximately 0.03 h(-1). After 70 h, 33 +/- 10% of the added cesium had been removed with the bottom ash, 7 +/- 5% with secondary cyclone ash, and 45 +/- 10% with the bag-house filter ash. About 15% of the Cs remained in the facility at this time, either bound to the fluidized bed material or as deposits on surfaces. Cesium compounds released from the bed participate in the formation of new particles that are efficiently collected by the bag-house filters. A minor Cs fraction also condenses on fly ash particles that are removed by the secondary cyclone. The study shows that the results of cesium addition can be followed in detail under typical operation conditions, and the potential of the tracer method for studies of transformations and fate of alkali compounds in commercial scale boilers is discussed

    Differential acute gene expression changes after 5 types of traumatic injury in spinal cord and the brain

    No full text
    Although a general poor outcome of lesions in mammalian central nervous system there are some interesting regional differences in the response to traumatic injury. There are indications that the inflammatory pattern and the duration of traumatic defects in the Blood Brain Barrier are dissimilar in the brain and the spinal cord. In this study we have examined the acute gene expression response in the adult rat after two types of traumatic brain injury (TBI) and two types of lesions affecting the spinal cord. The TBI models were an exposure to blast overpressure (200 kPa), a sagittal acceleration injury and a cortical penetration injury. The spinal injuries were lumbar ventral root avulsion at the border between the CNS and PNS. Ventral root avulsion is not followed by spontaneous regrowth. The second spinal injury was replantation of avulsed spinal ventral roots, enabling significant and useful regrowth of motor axons. In this study we have analyzed the acute response to these 5 types of injury with gene arrays combined with cluster analysis of gene ontology search terms. 3 adult Sprague-Dawley rats for each of the 5 models were used. 24 h after the injury, the animals were anesthetized and the inferior vena cava was cut open. The hippocampus and the cortex were used for analysis of the 3 TBI models and the ipsilateral ventral quadrat of the affected spinal cord segment was used for the spinal injuries. RNA samples were analysed was then hybridized to Affymetrix Rat Gene ST 1.0 array. The data show significant differences between rats subjected to ventral replantation compared to avulsion only. Whereas, the number of genes related to cell death is similar in the two models after 24 hours, we observed a significantly larger number of genes related to neurite growth and development in the rats treated with ventral root replantation. In addition, an acute inflammatory response was observed after avulsion, while effects on genes related to synaptic transmission were much more pronounced after replantation than after avulsion without replantation. Blast overpressure induced limited shifts in gene expression in the hippocampus. The most interesting findings were a down regulation of genes involved in neurogenesis and synaptic transmission. Acceleration and penetration injuries resulted in changes in the expression in a large number of gene families including cell death, inflammation and neurotransmitters in the hippocampus and the cortex. We, conclude that cluster analysis of gene ontology search terms analysis may facilitate the comparison of the acute response in different types of injury

    Differential acute gene expression changes after 5 types of traumatic injury in spinal cord and the brain

    No full text
    Although a general poor outcome of lesions in mammalian central nervous system there are some interesting regional differences in the response to traumatic injury. There are indications that the inflammatory pattern and the duration of traumatic defects in the Blood Brain Barrier are dissimilar in the brain and the spinal cord. In this study we have examined the acute gene expression response in the adult rat after two types of traumatic brain injury (TBI) and two types of lesions affecting the spinal cord. The TBI models were an exposure to blast overpressure (200 kPa), a sagittal acceleration injury and a cortical penetration injury. The spinal injuries were lumbar ventral root avulsion at the border between the CNS and PNS. Ventral root avulsion is not followed by spontaneous regrowth. The second spinal injury was replantation of avulsed spinal ventral roots, enabling significant and useful regrowth of motor axons. In this study we have analyzed the acute response to these 5 types of injury with gene arrays combined with cluster analysis of gene ontology search terms. 3 adult Sprague-Dawley rats for each of the 5 models were used. 24 h after the injury, the animals were anesthetized and the inferior vena cava was cut open. The hippocampus and the cortex were used for analysis of the 3 TBI models and the ipsilateral ventral quadrat of the affected spinal cord segment was used for the spinal injuries. RNA samples were analysed was then hybridized to Affymetrix Rat Gene ST 1.0 array. The data show significant differences between rats subjected to ventral replantation compared to avulsion only. Whereas, the number of genes related to cell death is similar in the two models after 24 hours, we observed a significantly larger number of genes related to neurite growth and development in the rats treated with ventral root replantation. In addition, an acute inflammatory response was observed after avulsion, while effects on genes related to synaptic transmission were much more pronounced after replantation than after avulsion without replantation. Blast overpressure induced limited shifts in gene expression in the hippocampus. The most interesting findings were a down regulation of genes involved in neurogenesis and synaptic transmission. Acceleration and penetration injuries resulted in changes in the expression in a large number of gene families including cell death, inflammation and neurotransmitters in the hippocampus and the cortex. We, conclude that cluster analysis of gene ontology search terms analysis may facilitate the comparison of the acute response in different types of injury
    corecore