13 research outputs found
Synthesis, Characterization and Biological Evaluation of Pyrrolo[2,1-c][1,4]benzodiazepines for Cytotoxicity and Serine β-lactamases Inhibition
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) derivatives possess cancerostatic and anti-infective properties thus making them candidates of possible antibacterial agents. ²-lactam antibiotics are vital weapons for the treatment of bacterial infections, but their existence and effectiveness has been faced with resistance from ²-lactamases. Therefore, the need for new effective antimicrobial drugs is very crucial. In this work, we synthesized in high yields, PBD analogs 1−3, 5 and 7−9 in three to four synthetic steps from commercially available L-proline and isatoic anhydride. MTT Assay was employed to test the in vitro cytotoxicity of PBD analogs 1, 2, 5 and 7 on cancer cell lines including MCF-7, SKBR-3, SKMEL-2, CaCo 2 and Mia Paca. These compounds decreased the cell viability of MCF-7 by roughly 20% however, 1 and 5 had no effect on the SKMEL-2 cell lines. The inhibitory efficacy of these PBDs were also tested against TEM-1 and P99 Serine class A and C ²-lactamases
Synthesis and Biological Activity of Fused tetracyclic Pyrrolo[2,1-C][1,4]Benzodiazepines
Cancer remains the second major cause of death in the world. Thus, there is a pressing need to identify potential synthetic route for the development of novel anticancer agents which will serve as lead compounds to effectively combat this life-threatening epidemic. Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) have sparked a great interest as lead compounds because of their cancerostatic and anti-infective properties. The twisted molecular structure of PBD analogs provides both helical and chiral elements. In an effort to expand novel PBDs that interact with the key exocyclic amino group of the DNA-guanine base, we hypothesized that construction of a fused cyclic active system, would likely serve as an electrophilic site when compared to traditional electrophilic C11-N10 imine group. To examine our theory, we report herein the synthesis and cell viability/cytotoxicity of a series of PBD analogs using NCI-60 cell lines screening. Thus, compounds 1–13 were synthesized and fully characterized. The selected PBDs were found to have marginal inhibition of growth, up to 30%, for certain cell lines
Discovery of FERM domain protein-protein interaction inhibitors for MSN and CD44 as a potential therapeutic approach for Alzheimer\u27s disease.
Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer\u27s disease (AD) traits and microglia. These proteins are more abundant in Alzheimer\u27s patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PI
Quinazolin-4(3<i>H</i>)-ones and 5,6-Dihydropyrimidin-4(3<i>H</i>)-ones from β-Aminoamides and Orthoesters
Quinazolin-4(3H)-ones have been prepared in one step from 2-aminobenzamides and orthoesters in the presence of acetic acid. Simple 2-aminobenzamides were easily converted to the heterocycles by refluxing in absolute ethanol with 1.5 equivalents of the orthoester and 2 equivalents of acetic acid for 12⁻24 h. Ring-substituted and hindered 2-aminobenzamides as well as cases incorporating an additional basic nitrogen required pressure tube conditions with 3 equivalents each of the orthoester and acetic acid in ethanol at 110 °C for 12⁻72 h. The reaction was tolerant towards functionality on the benzamide and a range of structures was accessible. Workup involved removal of the solvent under vacuum and either recrystallization from ethanol or trituration with ether-pentane. Several 5,6-dihydropyrimidin-4(3H)-ones were also prepared from 3-amino-2,2-dimethylpropionamide. All products were characterized by melting point, FT-IR, 1H-NMR, 13C-NMR, and HRMS
Syntheses of 1-Aryl-5-nitro-1H-indazoles and a General One-Pot Route to 1-Aryl-1H-indazoles
An efficient route to substituted 1-aryl-1H-indazoles has been developed and optimized. The method involved the preparation of arylhydrazones from acetophenone or benzaldehyde substituted by fluorine at C2 and nitro at C5, followed by deprotonation and nucleophilic aromatic substitution (SNAr) ring closure in 45–90%. Modification of this procedure to a one-pot domino process was successful in the acetophenone series (73–96%), while the benzaldehyde series (63–73%) required a step-wise addition of reagents. A general one-pot protocol for 1-aryl-1H-indazole formation without the limiting substitution patterns required for the SNAr cyclization has also been achieved in 62–78% yields. A selection of 1-aryl-1H-indazoles was prepared in high yield by a procedure that requires only a single laboratory operation
Dihydroquinolines, Dihydronaphthyridines and Quinolones by Domino Reactions of Morita-Baylis-Hillman Acetates
An efficient synthetic route to highly substituted dihydroquinolines and dihydronaphthyridines has been developed using a domino reaction of Morita-Baylis-Hillman (MBH) acetates with primary aliphatic and aromatic amines in DMF at 50–90 °C. The MBH substrates incorporate a side chain acetate positioned adjacent to an acrylate or acrylonitrile aza-Michael acceptor as well as an aromatic ring activated toward SNAr ring closure. A control experiment established that the initial reaction was an SN2′-type displacement of the side chain acetate by the amine to generate the alkene product with the added nitrogen nucleophile positioned trans to the SNAr aromatic ring acceptor. Thus, equilibration of the initial alkene geometry is required prior to cyclization. A further double bond migration was observed for several reactions targeting dihydronaphthyridines from substrates with a side chain acrylonitrile moiety. MBH acetates incorporating a 2,5-difluorophenyl moiety were found to have dual reactivity in these annulations. In the absence of O2, the expected dihydroquinolines were formed, while in the presence of O2, quinolones were produced. All of the products were isolated in good to excellent yields (72–93%). Numerous cases (42) are reported, and mechanisms are discussed
Naphthalenes and Quinolines by Domino Reactions of Morita–Baylis–Hillman Acetates
An efficient synthetic route to highly functionalized naphthalenes and quinolines has been developed using domino reactions between Morita–Baylis–Hillman (MBH) acetates and active methylene compounds (AMCs) promoted by anhydrous K2CO3 in dry N,N-dimethylformamide (DMF) at 23 °C. The substrates incorporate allylic acetates positioned adjacent to a Michael acceptor as well as an aromatic ring activated toward a SNAr ring closure. A control experiment indicated that the initial reaction was an SN2’-type displacement of a side chain acetoxy by the AMC anion to afford the alkene product bearing the added nucleophile trans to the SNAr aromatic ring acceptor. Thus, equilibration of the alkene geometry of the initial product was required prior to cyclization. Products were isolated in good to excellent yields. Numerous cases (24) are reported, and several mechanistic possibilities are discussed
4H-Benzo[d][1,3]oxazin-4-ones and Dihydro Analogs from Substituted Anthranilic Acids and Orthoesters
Strategy for Lead Identification for Understudied Kinases
In
our manuscript we outline an approach in which we convert a promiscuous
pyrimidine scaffold into narrowly selective, cell-active chemical leads for
several understudied kinases, including DRAK1, BMP2K, and MARK4. These chemical
tools will allow illumination of the function(s) of these poorly characterized
kinases for the first time. Several of the understudied kinases that we inhibit
with our pyrimidine-based compounds are also implicated in neurodegenerative
disease, pushing the utility of kinase inhibitors outside of the oncology space
and offering opportunities for the validation of therapeutic hypotheses
attributed to these kinases.</p
Synthesis and biological activity of fused tetracyclic Pyrrolo[2,1-c][1,4]benzodiazepines
Cancer remains the second major cause of death in the world. Thus, there is a pressing need to identify potential synthetic route for the development of novel anticancer agents which will serve as lead compounds to effectively combat this life-threatening epidemic. Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) have sparked a great interest as lead compounds because of their cancerostatic and anti-infective properties. The twisted molecular structure of PBD analogs provides both helical and chiral elements. In an effort to expand novel PBDs that interact with the key exocyclic amino group of the DNA-guanine base, we hypothesized that construction of a fused cyclic active system, would likely serve as an electrophilic site when compared to traditional electrophilic C11-N10 imine group. To examine our theory, we report herein the synthesis and cell viability/cytotoxicity of a series of PBD analogs using NCI-60 cell lines screening. Thus, compounds 1–13 were synthesized and fully characterized. The selected PBDs were found to have marginal inhibition of growth, up to 30%, for certain cell lines