83 research outputs found

    Quantitative comparison of EST libraries requires compensation for systematic biases in cDNA generation

    Get PDF
    BACKGROUND: Publicly accessible EST libraries contain valuable information that can be utilized for studies of tissue-specific gene expression and processing of individual genes. This information is, however, confounded by multiple systematic effects arising from the procedures used to generate these libraries. RESULTS: We used alignment of ESTs against a reference set of transcripts to estimate the size distributions of the cDNA inserts and sampled mRNA transcripts in individual EST libraries and show how these measurements can be used to inform quantitative comparisons of libraries. While significant attention has been paid to the effects of normalization and substraction, we also find significant biases in transcript sampling introduced by the combined procedures of reverse transcription and selection of cDNA clones for sequencing. Using examples drawn from studies of mRNA 3'-processing (cleavage and polyadenylation), we demonstrate effects of the transcript sampling bias, and provide a method for identifying libraries that can be safely compared without bias. All data sets, supplemental data, and software are available at our supplemental web site [1]. CONCLUSION: The biases we characterize in the transcript sampling of EST libraries represent a significant and heretofore under-appreciated source of false positive candidates for tissue-, cell type-, or developmental stage-specific activity or processing of genes. Uncorrected, quantitative comparison of dissimilar EST libraries will likely result in the identification of statistically significant, but biologically meaningless changes

    A multispecies comparison of the metazoan 3'-processing downstream elements and the CstF-64 RNA recognition motif

    Get PDF
    BACKGROUND: The Cleavage Stimulation Factor (CstF) is a required protein complex for eukaryotic mRNA 3'-processing. CstF interacts with 3'-processing downstream elements (DSEs) through its 64-kDa subunit, CstF-64; however, the exact nature of this interaction has remained unclear. We used EST-to-genome alignments to identify and extract large sets of putative 3'-processing sites for mRNA from ten metazoan species, including Homo sapiens, Canis familiaris, Rattus norvegicus, Mus musculus, Gallus gallus, Danio rerio, Takifugu rubripes, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans. In order to further delineate the details of the mRNA-protein interaction, we obtained and multiply aligned CstF-64 protein sequences from the same species. RESULTS: We characterized the sequence content and specific positioning of putative DSEs across the range of organisms studied. Our analysis characterized the downstream element (DSE) as two distinct parts – a proximal UG-rich element and a distal U-rich element. We find that while the U-rich element is largely conserved in all of the organisms studied, the UG-rich element is not. Multiple alignment of the CstF-64 RNA recognition motif revealed that, while it is highly conserved throughout metazoans, we can identify amino acid changes that correlate with observed variation in the sequence content and positioning of the DSEs. CONCLUSION: Our analysis confirms the early reports of separate U- and UG-rich DSEs. The correlated variations in protein sequence and mRNA binding sequences provide novel insights into the interactions between the precursor mRNA and the 3'-processing machinery

    Factors that influence response classifications in chemotherapy treated patient-derived xenografts (PDX).

    Get PDF
    In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3-10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)-independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups

    Macrophage differentiation is marked by increased abundance of the mRNA 3’ end processing machinery, altered poly(A) site usage, and sensitivity to the level of CstF64

    Get PDF
    Regulation of mRNA polyadenylation is important for response to external signals and differentiation in several cell types, and results in mRNA isoforms that vary in the amount of coding sequence or 3’ UTR regulatory elements. However, its role in differentiation of monocytes to macrophages has not been investigated. Macrophages are key effectors of the innate immune system that help control infection and promote tissue-repair. However, overactivity of macrophages contributes to pathogenesis of many diseases. In this study, we show that macrophage differentiation is characterized by shortening and lengthening of mRNAs in relevant cellular pathways. The cleavage/polyadenylation (C/P) proteins increase during differentiation, suggesting a possible mechanism for the observed changes in poly(A) site usage. This was surprising since higher C/P protein levels correlate with higher proliferation rates in other systems, but monocytes stop dividing after induction of differentiation. Depletion of CstF64, a C/P protein and known regulator of polyadenylation efficiency, delayed macrophage marker expression, cell cycle exit, attachment, and acquisition of structural complexity, and impeded shortening of mRNAs with functions relevant to macrophage biology. Conversely, CstF64 overexpression increased use of promoter-proximal poly(A) sites and caused the appearance of differentiated phenotypes in the absence of induction. Our findings indicate that regulation of polyadenylation plays an important role in macrophage differentiation

    Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes

    Get PDF
    Evidence from inbred strains of mice indicates that a quarter or more of the mammalian genome consists of chromosome regions containing clusters of functionally related genes. The intense selection pressures during inbreeding favor the coinheritance of optimal sets of alleles among these genetically linked, functionally related genes, resulting in extensive domains of linkage disequilibrium (LD) among a set of 60 genetically diverse inbred strains. Recombination that disrupts the preferred combinations of alleles reduces the ability of offspring to survive further inbreeding. LD is also seen between markers on separate chromosomes, forming networks with scale-free architecture. Combining LD data with pathway and genome annotation databases, we have been able to identify the biological functions underlying several domains and networks. Given the strong conservation of gene order among mammals, the domains and networks we find in mice probably characterize all mammals, including humans

    Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitinmediated degradation.

    Get PDF
    Mutation of the essential yeast protein Ipa1 has previously been demonstrated to cause defects in premRNA 3ʹ end processing and growth, but the mechanism underlying these defects was not clear. In this study, we show that the ipa1-1 mutation causes a striking depletion of Ysh1, the evolutionarily conserved endonuclease subunit of the 19-subunit mRNA Cleavage/Polyadenylation (C/P) complex, but does not decrease other C/P subunits. YSH1 overexpression rescues both the growth and 3ʹ end processing defects of the ipa1-1 mutant. YSH1 mRNA level is unchanged in ipa1-1 cells, and proteasome inactivation prevents Ysh1 loss and causes accumulation of ubiquitinated Ysh1. Ysh1 ubiquitination is mediated by the Ubc4 ubiquitin-conjugating enzyme and Mpe1, which in addition to its function in C/P, is also a RING ubiquitin ligase. In summary, Ipa1 affects mRNA processing by controlling the availability of the C/P endonuclease and may represent a regulatory mechanism that could be rapidly deployed to facilitate reprogramming of cellular responses.post-print4,60 M

    The Recombinational Anatomy of a Mouse Chromosome

    Get PDF
    Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1–2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2× higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots

    CGDSNPdb: a database resource for error-checked and imputed mouse SNPs

    Get PDF
    The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the ‘imputed genotype resource’ in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600 000 SNPs and over 900 000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login

    Factors that influence response classifications in chemotherapy treated patient-derived xenografts (PDX)

    Get PDF
    In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3–10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)—independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups
    corecore