14 research outputs found

    Molecular targets to treat muscular dystrophies

    No full text
    Muscular dystrophies are classically subdivided according to their clinical phenotype, and were historically defined as progressive myopathies in which muscle biopsies demonstrate muscle fibre necrosis and regeneration, as well as replacement of muscle fibres by adipose and connective tissue. In recent years, great progress has been made in identifying the genetic basis of many myopathies, thereby presenting opportunities to develop therapeutic strategies that act on specific molecular pathomechanisms. The different therapeutic strategies and their molecular targets will be reviewed

    Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam)

    No full text
    BACKGROUND: Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. METHODS: In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. RESULTS: We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. CONCLUSION: Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies

    HuD binds to three AU-rich sequences in the 3′-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein

    No full text
    Neuroserpin is an axonally secreted serine protease inhibitor expressed in the nervous system that protects neurons from ischemia-induced apoptosis. Mutant neuroserpin forms have been found polymerized in inclusion bodies in a familial autosomal encephalopathy causing dementia, or associated with epilepsy. Regulation of neuroserpin expression is mostly unknown. Here we demonstrate that neuroserpin mRNA and the RNA-binding protein HuD are co-expressed in the rat central nervous system, and that HuD binds neuroserpin mRNA in vitro with high affinity. Gel-shift, supershift and T1 RNase assays revealed three HuD-binding sequences in the 3′-untranslated region (3′-UTR) of neuroserpin mRNA. They are AU-rich and 20, 51 and 19 nt in length. HuD binding to neuroserpin mRNA was also demonstrated in extracts of PC12 pheochromocytoma cells. Additionally, ectopic expression of increasing amounts of HuD in these cells results in the accumulation of neuroserpin 3′-UTR mRNA. Furthermore, stably transfected PC12 cells over-expressing HuD contain increased levels of both neuroserpin mRNAs (3.0 and 1.6 kb) and protein. Our results indicate that HuD stabilizes neuroserpin mRNA by binding to specific AU-rich sequences in its 3′-UTR, which prolongs the mRNA lifetime and increases protein level

    HuD binds to three AU-rich sequences in the 3′-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein

    Get PDF
    Neuroserpin is an axonally secreted serine protease inhibitor expressed in the nervous system that protects neurons from ischemia-induced apoptosis. Mutant neuroserpin forms have been found polymerized in inclusion bodies in a familial autosomal encephalopathy causing dementia, or associated with epilepsy. Regulation of neuroserpin expression is mostly unknown. Here we demonstrate that neuroserpin mRNA and the RNA-binding protein HuD are co-expressed in the rat central nervous system, and that HuD binds neuroserpin mRNA in vitro with high affinity. Gel-shift, supershift and T1 RNase assays revealed three HuD-binding sequences in the 3′‐untranslated region (3′-UTR) of neuroserpin mRNA. They are AU-rich and 20, 51 and 19 nt in length. HuD binding to neuroserpin mRNA was also demonstrated in extracts of PC12 pheochromocytoma cells. Additionally, ectopic expression of increasing amounts of HuD in these cells results in the accumulation of neuroserpin 3′-UTR mRNA. Furthermore, stably transfected PC12 cells over-expressing HuD contain increased levels of both neuroserpin mRNAs (3.0 and 1.6 kb) and protein. Our results indicate that HuD stabilizes neuroserpin mRNA by binding to specific AU-rich sequences in its 3′-UTR, which prolongs the mRNA lifetime and increases protein leve

    Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice

    No full text
    Intrahepatic bile duct (IHBD) development begins with the differentiation of hepatoblasts into a single continuous biliary epithelial cell (BEC) layer, called the ductal plate. During ductal plate remodeling, tubular structures arise at distinct sites of the ductal plate, forming bile ducts that dilate into the biliary tree. Alagille syndrome patients, who suffer from bile duct paucity, carry Jagged1 and Notch2 mutations, indicating that Notch2 signaling is important for IHBD development. To clarify the role of Notch2 in BEC differentiation, tubulogenesis, and BEC survival, we developed a mouse model for conditional expression of activated Notch2 in the liver. We show that expression of the intracellular domain of Notch2 (Notch2ICD) differentiates hepatoblasts into BECs, which form additional bile ducts in periportal regions and ectopic ducts in lobular regions. Additional ducts in periportal regions are maintained into adulthood and connect to the biliary tight junction network, resulting in an increased number of bile ducts per portal tract. Remarkably, Notch2ICD-expressing ductal plate remnants were not eliminated during postnatal development, implicating Notch2 signaling in BEC survival. Ectopic ducts in lobular regions did not persist into adulthood, indicating that local signals in the portal environment are important for maintaining bile ducts. Conclusion: Notch2 signaling regulates BEC differentiation, the induction of tubulogenesis during IHBD development, and BEC survival

    Gene expression profiling in nerve biopsy of vasculitic neuropathy

    No full text
    To investigate molecular mechanisms of peripheral nerve vasculitis, gene expression patterns in archived frozen sural nerve biopsies from patients with vasculitic neuropathy were compared to control nerves by DNA microarray technology. There was a striking upregulation of mRNA of genes involved in immune system processes. Of special interest was the activation of immunoglobulin genes, such as IGLJ3, IGHG3, IGKC, and IGL, and of several chemokines, such as CXCL9 or CCR2. Genes involved in vascular proliferation or remodelling such as CXC31 and AIF were also upregulated. Among the downregulated genes were the KrĂźppel-Like Transcription Factors KLF2, KLF4 and the nuclear orphan receptor NR4A1 genes known to be involved in endothelial cell activation. Thus, this gene expression profile analysis revealed that in peripheral nerve vasculitis a prominent activation of immune response related genes as well as genes involved in vascular proliferation is taken place, while genes inhibiting endothelial cell activation are down regulated. These data point to interesting mechanistic clues to the molecular pathogenesis of vasculitic neuropathies

    CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I

    No full text
    Abstract Background Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. Methods We compared changes in NMJs and activity-dependent signalling pathways in HSA LR and Mbnl1 ΔE3/ΔE3 mice, two established mouse models of DM1. Results Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1 ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. Conclusions Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients

    Accumulation of Mutant Neuroserpin Precedes Development of Clinical Symptoms in Familial Encephalopathy with Neuroserpin Inclusion Bodies

    No full text
    Intracellular protein deposition due to aggregation caused by conformational alteration is the hallmark of a number of neurodegenerative disorders, including Parkinson’s disease, tauopathies, Huntington’s disease, and familial encephalopathy with neuroserpin inclusion bodies. The latter is an autosomal dominant disorder caused by point mutations in neuroserpin resulting in its destabilization. Mutant neuroserpin polymerizes and forms intracellular aggregates that eventually lead to neurodegeneration. We generated genetically modified mice expressing the late-onset S49P-Syracuse or the early-onset S52R-Portland mutation of neuroserpin in central nervous system neurons. Mice exhibited morphological, biochemical, and clinical features resembling those found in the human disease. Analysis of brains revealed large intraneuronal inclusions composed exclusively of mutant neuroserpin, accumulating long before the development of clinical symptoms in a time-dependent manner. Clinical symptoms and amount of neuroserpin inclusions correlated with the predicted instability of the protein. The presence of inclusion bodies in subclinical mice indicates that in humans the prevalence of the disease could be higher than anticipated. In addition to shedding light on the pathophysiology of the human disorder, these mice provide an excellent model to study mechanisms of neurodegeneration or establish novel therapies for familial encephalopathy with neuroserpin inclusion bodies and other neurodegenerative diseases with intracellular protein deposition
    corecore