33 research outputs found

    Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Get PDF
    Background: Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods: Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results: Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions: Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.Zhi Yi Ong, Rachel J. Gibson, Joanne M. Bowen, Andrea M. Stringer, Jocelyn M. Darby, Richard M. Logan, Ann S.J. Yeoh, Dorothy M. Keef

    A second transmissible cancer in Tasmanian devils.

    Get PDF
    Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.We thank Bill Brown, Phil Iles, Billie Lazenby, Jacinta Marr, Jane McGee, Sarah Peck, Holly Wiersma and Phil Wise for assistance with sample collection and curation. Adrian Baez-Ortega, Andrew Davis, Jo Hanuszewicz, Gina Kalodimos, Amanda Patchett, Narelle Phillips, Elizabeth Reid Swainscoat, Jim Richley, Rachel Stivicic and Jim Taylor assisted with surveying, laboratory analysis, data processing and display. We are grateful for support received from Mike Stratton, the Wellcome Trust Sanger Institute (WTSI) sequencing and informatics teams and the WTSI Cancer Genome Project. This work was supported by a Wellcome Trust Investigator Award (102942/Z/13/Z) and by grants from the Australian Research Council (ARC-DP130100715; ARC-LP130100218). Support was provided by Dr Eric Guiler Tasmanian Devil Research Grants and by the Save the Tasmanian Devil Program. JMCT was partly supported by a Marie Curie Fellowship (FP7-PEOPLE- 2012-IEF, 328364). Sequences associated with this paper have been deposited in Genbank with accession numbers KT188437 and KT188438

    APOMAB®, a La-Specific Monoclonal Antibody, Detects the Apoptotic Tumor Response to Life-Prolonging and DNA-Damaging Chemotherapy

    Get PDF
    Background: Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB® representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy. Here, we aim to image tumor uptake of APOMAB® (DAB4) and to define its biological correlates. Methodology/Principal Findings: Brisk tumor cell apoptosis is induced in the syngeneic EL4 lymphoma model after treatment of tumor-bearing mice with DNA-damaging cyclophosphamide/etoposide chemotherapy. Tumor and normal organ accumulation of Indium 111 (111In)-labeled La-specific DAB4 mAb as whole IgG or IgG fragments was quantified by whole-body static imaging and organ assay in tumor-bearing mice. Immunohistochemical measurements of tumor caspase-3 activation and PARP-1 cleavage, which are indicators of early and late apoptosis, respectively, were correlated with tumor accumulation of DAB4. Increased tumor accumulation of DAB4 was associated directly with both the extent of chemotherapy-induced tumor cell death and DAB4 binding per dead tumor cell. Tumor DAB4 accumulation correlated with cumulative caspase-3 activation and PARP-1 cleavage as tumor biomarkers of apoptosis and was directly related to the extended median survival time of tumor-bearing mice. Conclusions/Significance: Radiolabeled La-specific monoclonal antibody, DAB4, detected dead tumor cells after chemotherapy, rather than chemosensitive normal tissues of gut and bone marrow. DAB4 identified late apoptotic tumor cells in vivo. Hence, radiolabeled DAB4 may usefully image responses to human carcinoma therapy because DAB4 would capture the protracted cell death of carcinoma. We believe that the ability of radiolabeled DAB4 to rapidly assess the apoptotic tumor response and, consequently, to potentially predict extended survival justifies its future clinical development as a radioimmunoscintigraphic agent. This article is part I of a two-part series providing proof-of-concept for the the diagnostic and therapeutic use of a La-specific monoclonal antibody, the DAB4 clone of which is represented by the registered trademark, APOMAB®.Fares Al-Ejeh, Jocelyn M. Darby, Chris Tsopelas, Douglas Smyth, Jim Manavis and Michael P. Brow

    Chemotherapy Synergizes with Radioimmunotherapy Targeting La Autoantigen in Tumors

    Get PDF
    To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 (90Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment. Methodology/Principal Findings: Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-​tetraacetic acid (DOTA), and then radiolabeled with 90Y. Mice bearing established subcutaneous tumors were treated with 90Y-DOTA-DAB4 alone or after chemotherapy. Non-radiosensitizing cyclophosphamide/etoposide chemotherapy was used for the syngeneic EL4 lymphoma model. Radiosensitizing cisplatin/gemcitabine chemotherapy was used for the syngeneic Lewis Lung carcinoma (LL2) model, and for the xenograft models of LNCaP prostatic carcinoma and Panc-1 pancreatic carcinoma. We demonstrate the safety, specificity, and efficacy of 90Y-DOTA-DAB4-radioimmunotherapy alone or combined with chemotherapy. EL4 lymphoma-bearing mice either were cured at higher doses of radioimmunotherapy alone or lower doses of radioimmunotherapy in synergy with chemotherapy. Radioimmunotherapy alone was less effective in chemo- and radio-resistant carcinoma models. However, radioimmunotherapy synergized with radiosensitizing chemotherapy to retard significantly tumor regrowth and so prolong the survival of mice bearing LL2, LNCaP, or Panc-1 subcutaneous tumor implants. Conclusions/Significance: We report proof-of-concept data supporting a unique form of radioimmunotherapy, which delivers bystander killing to viable cancer cells after targeting the universal cancer antigen, La, created by DNA-damaging treatment in neighboring dead cancer cells. Subsequently we propose that DAB4-targeted ionizing radiation induces additional cycles of tumor cell death, which further augments DAB4 binding to produce a tumor-lethal ‘genotoxic chain reaction’. Clinically, this approach may be useful as consolidation treatment after a drug-induced cell death among (small-volume) metastatic deposits, the commonest cause of cancer death. This article is part II of a two-part series providing proof-of-concept for the diagnostic and therapeutic use of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®.Fares Al-Ejeh, Jocelyn M. Darby and Michael P. Brow

    The La autoantigen is a malignancy-associated cell death target that is induced by DNA-damaging drugs

    No full text
    Purpose: To evaluate the La autoantigen as a target for specific monoclonal antibody (mAb) binding in dead cancer cells after use of DNA-damaging chemotherapy. Experimental Design: In vitro studies of La-specific 3B9 mAb binding tomalignant and normal primary cells with and without cytotoxic drug treatment were done using immunoblotting and flow cytometry. Chromatin-binding studies and immunofluorescence detection of γH2AX as a marker of DNA double-stranded breaks together with 3B9 binding assays were done tomeasure DNA damage responses. Incorporation of a transglutaminase 2 (TG2) substrate and TG2 inhibition were studied tomeasure protein cross-linking in dead cells. Results: La was overexpressed in human cancer cell lines with respect to normal primary cells. Within 3 h of the DNA-damaging stimulus, La became chromatin bound when it colocalized with γH2AX. Later, after the stimulus produced cell death, La-specific 3B9 mAb bound specifically and preferentially in the cytoplasm of dead cancer cells. Moreover, 3B9 binding to dead cancer cells increased with increasing DNA damage. Both La and 3B9 became cross-linked in dead cancer cells via TG2 activity. Conclusion: La autoantigen represents a promising cancer cell death target to determine chemotherapy response because its expression was selectively induced in dead cancer cells after DNA-damaging chemotherapy

    The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.

    Get PDF
    The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy

    Apoptotic pathways are not activated in Tasmanian devil fibroblasts after imiquimod treatment.

    No full text
    <p>Cellular responses to imiquimod treatment were measured in the DFT1 cell line C5065, DFT2 cell line RV and non-transformed fibroblast cell line TD344. (a) Induction of apoptosis by imquimod was measured through detection of annexin V binding (early and late apoptosis) and PI staining (late apoptosis and necrosis) after 48 h of imiquimod treatment. (b) DNA fragmentation was measured in fixed cells by flow cytometry analysis of total DNA staining with PI. A hypodiploid peak represents fragmented DNA and indicates that cells are apoptotic. (c) Modulation of cell number in C5065 and TD344 cultures by imiquimod treatment was measured using a WST-8 assay. Mean percent relative cell number was calculated by comparison to untreated cultures. Cells were treated with 0.5% DMSO as a vehicle control, which had no effect. (d) Expression of pro-apoptotic <i>BIM</i> and anti-apoptotic <i>BCL2</i> was anaysed in RNA samples from treated fibroblasts using qRT-PCR. Gene expression levels were measured relative to <i>18S rRNA</i>. All results are displayed as the mean and standard error of three replicates. Statistical significance is defined as *<0.05, **<0.01, ***<0.001.</p
    corecore