79 research outputs found

    Estudio y análisis de la tecnología de las pilas de combustible y su aplicación a los buques mercantes

    Get PDF
    Debido al aumento de las emisiones contaminantes producidos por el transporte marítimo, existe la necesidad de implementar medidas que ayuden a reducir estas emisiones y finalmente descarbonizar el transporte marítimo. Entre las medidas que se están estudiando e implementando por parte de las sociedades de clasificación y las administraciones, se encuentran las pilas de combustible. en este trabajo se estudian los diferentes tipos de pilas, su funcionamiento y la viabilidad de estos sistemas aplicados a los buques mercantes y se evalúa cómo afectaría la implementación en un caso real.Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::14 - Vida SubmarinaObjectius de Desenvolupament Sostenible::13 - Acció per al Clim

    Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme

    Get PDF
    This work was supported by grants from the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III - PI10/01438), the European Regional Development Fund (FEDER), and the Generalitat de Catalunya (2009SGR-108) to EJ, and grants from the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III - PI081062), the European Regional Development Fund (FEDER),), the Spanish Ministerio de Ciencia e InnovaciĂłn (BFU2011-24066), the ERA-NET PathoGenoMics, the RamĂłn y Cajal program and the Catalan and Spanish cystic fibrosis federation to ET.The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RN

    Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model

    Get PDF
    Liposomal amphotericin B; Antifungal lock technique; Candida albicansAmfotericina B liposomal; Tècnica de bloqueig antifúngic; Candida albicansAnfotericina B liposomal; Técnica de bloqueo antifúngico; Candida albicansOBJECTIVE: The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model. METHODS: Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC90) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL). RESULTS: In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC90 of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC90 of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log10 cfu recovered from the catheter tips (CA176: 3.6±0.3 log10 CFU, p≤0.0001; CA180: 3.8±0.1 log10 CFU, p≤0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log10 CFU, p≤0.0001; CG334: 5.1 log10 CFU, p≤0.0001). CONCLUSIONS: For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains

    Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model

    Get PDF
    Funding: This study was co-financed by the European Development Regional Fund "A way to achieve Europe" ERDF and partially by Pfizer, Inc.Objective: The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model. Methods: Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC ) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL). Results: In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log cfu recovered from the catheter tips (CA176: 3.6±0.3 log CFU, p0.0001; CA180: 3.8±0.1 log CFU, p0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log CFU, p0.0001; CG334: 5.1 log CFU, p0.0001) Conclusions: For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains

    Methicillin-Susceptible Staphylococcus aureus Biofilm Formation on Vascular Grafts: an In Vitro Study

    Get PDF
    Staphylococcus aureus; Biofilm; InfectionStaphylococcus aureus; Biopelícula; InfecciónStaphylococcus aureus; Biopel·lícula; InfeccióThe aim of this study was to quantify in vitro biofilm formation by methicillin-susceptible Staphylococcus aureus (MSSA) on the surfaces of different types of commonly used vascular grafts. We performed an in vitro study with two clinical strains of MSSA (MSSA2 and MSSA6) and nine vascular grafts: Dacron (Hemagard), Dacron-heparin (Intergard heparin), Dacron-silver (Intergard Silver), Dacron-silver-triclosan (Intergard Synergy), Dacron-gelatin (Gelsoft Plus), Dacron plus polytetrafluoroethylene (Fusion), polytetrafluoroethylene (Propaten; Gore), Omniflow II, and bovine pericardium (XenoSure). Biofilm formation was induced in two phases: an initial 90-minute adherence phase and a 24-hour growth phase. Quantitative cultures were performed, and the results were expressed as log10 CFU per milliliter. The Dacron-silver-triclosan graft and Omniflow II were associated with the least biofilm formation by both MSSA2 and MSSA6. MSSA2 did not form a biofilm on the Dacron-silver-triclosan graft (0 CFU/mL), and the mean count on the Omniflow II graft was 3.89 CFU/mL (standard deviation [SD] 2.10). The mean count for the other grafts was 7.01 CFU/mL (SD 0.82). MSSA6 formed a biofilm on both grafts, with 2.42 CFU/mL (SD 2.44) on the Dacron-silver-triclosan graft and 3.62 CFU/mL (SD 2.21) on the Omniflow II. The mean biofilm growth on the remaining grafts was 7.33 CFU/mL (SD 0.28). The differences in biofilm formation on the Dacron-silver-triclosan and Omniflow II grafts compared to the other tested grafts were statistically significant. Our findings suggest that of the vascular grafts we studied, the Dacron-silver-triclosan and Omniflow II grafts might prevent biofilm formation by MSSA. Although further studies are needed, these grafts seem to be good candidates for clinical use in vascular surgeries at high risk of infections due to this microorganism. IMPORTANCE The Dacron silver-triclosan and Omniflow II vascular grafts showed the greatest resistance to in vitro methicillin-susceptible Staphylococcus aureus biofilm formation compared to other vascular grafts. These findings could allow us to choose the most resistant to infection prosthetic graft

    In Vitro Antibacterial Activity of Silver Nanoparticles Conjugated with Amikacin and Combined with Hyperthermia against Drug-Resistant and Biofilm-Producing Strains

    Get PDF
    Antibacterial activity; Biofilms; Silver nanoparticlesActividad antibacteriana; Biopelículas; Nanopartículas de plataActivitat antibacteriana; Biopel·lícules; Nanopartícules de plataIn view of the current increase and spread of antimicrobial resistance (AMR), there is an urgent need to find new strategies to combat it. This study had two aims. First, we synthesized highly monodispersed silver nanoparticles (AgNPs) of approximately 17 nm, and we functionalized them with mercaptopoly(ethylene glycol) carboxylic acid (mPEG-COOH) and amikacin (AK). Second, we evaluated the antibacterial activity of this treatment (AgNPs_mPEG_AK) alone and in combination with hyperthermia against planktonic and biofilm-growing strains. AgNPs, AgNPs_mPEG, and AgNPs_mPEG_AK were characterized using a suite of spectroscopy and microscopy methods. Susceptibility to these treatments and AK was determined after 24 h and over time against 12 clinical multidrug-resistant (MDR)/extensively drug-resistant (XDR) isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The efficacy of the treatments alone and in combination with hyperthermia (1, 2, and 3 pulses at 41°C to 42°C for 15 min) was tested against the same planktonic strains using quantitative culture and against one P. aeruginosa strain growing on silicone disks using confocal laser scanning microscopy. The susceptibility studies showed that AgNPs_mPEG_AK was 10-fold more effective than AK alone, and bactericidal efficacy after 4, 8, 24, or 48 h was observed against 100% of the tested strains. The combination of AgNPs_mPEG_AK and hyperthermia eradicated 75% of the planktonic strains and exhibited significant reductions in biofilm formation by P. aeruginosa in comparison with the other treatments tested, except for AgNPs_mPEG_AK without hyperthermia. In conclusion, the combination of AgNPs_mPEG_AK and hyperthermia may be a promising therapy against MDR/XDR and biofilm-producing strains. IMPORTANCE Antimicrobial resistance (AMR) is one of the greatest public health challenges, accounting for 1.27 million deaths worldwide in 2019. Biofilms, a complex microbial community, directly contribute to increased AMR. Therefore, new strategies are urgently required to combat infections caused by AMR and biofilm-producing strains. Silver nanoparticles (AgNPs) exhibit antimicrobial activity and can be functionalized with antibiotics. Although AgNPs are very promising, their effectiveness in complex biological environments still falls below the concentrations at which AgNPs are stable in terms of aggregation. Thus, improving the antibacterial effectiveness of AgNPs by functionalizing them with antibiotics may be a significant change to consolidate AgNPs as an alternative to antibiotics. It has been reported that hyperthermia has a large effect on the growth of planktonic and biofilm-producing strains. Therefore, we propose a new strategy based on AgNPs functionalized with amikacin and combined with hyperthermia (41°C to 42°C) to treat AMR and biofilm-related infections.This study was supported by research grants from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (FIS 01162); la Marató TV3 (472/U/2018); the CaixaImpulse Program (Fundació LaCaixa); and the Spanish Network for Research in Infectious Diseases (REIPI RD19/0016)

    Influenza A H1N1/2009 Infection in Pediatric Solid Organ Transplant Recipients

    Get PDF
    The aim of this study was to describe the clinical characteristics of pandemic influenza A H1N1 infection. A retrospective study was performed in pediatric patients with solid organ transplantation and confirmed influenza A H1N1/2009 infection from June to December 2009, diagnosed in two Spanish teaching. Forty-nine patients were included. Pneumonia was diagnosed in 4 patients (8.2%), and 3 of them required respiratory support. There were no related deaths. Antiviral treatment within 48 hours was associated with a lower likelihood of pneumonia (0/38, 0%) than treatment started after 48 hours (4/11, 36.3%) (p 0.01).Es pretén descriure les característiques clíniques de la infecció pel virus Influenza A H1N1/2009. S'ha realitzat un estudi retrospectiu dels pacients pediàtrics i trasplantats d'òrgan sòlid, que van patir dita infecció, de juny a desembre de 2009, en dos hospitals universitaris. Es van incloure 49 pacients. Es va diagnosticar pneumònia en 4 (8,2%) i 3 d'aquests van requerir suport ventilatori. No hi va haver mortalitat relacionada amb la infecció. El tractament antiviral dins les primeres 48 hores es va associar amb menor incidència de pneumònia respecte el tractament iniciat més tardanament (0% vs 36,3%, p 0,01)

    Adipose tissue aging partially accounts for fat alterations in HIV lipodystrophy

    Get PDF
    Altres ajuts: European Regional Development Fund (FEDER).Lipodystrophy is a major disturbance in people living with HIV-1 (PLWH). Several systemic alterations in PLWH are reminiscent of those that occur in ageing. It is unknown whether the lipodystrophy in PLWH is the consequence of accelerated ageing in adipose tissue. We compared systemic and adipose tissue disturbances in PLWH with those in healthy elderly individuals (~80 y old). We observed similarly enhanced expression of inflammation-related genes and decreased autophagy in adipose tissues from elderly individuals and PLWH. Indications of repressed adipogenesis and mitochondrial dysfunction were found specifically in PLWH, whereas reduced telomere length and signs of senesce were specific to elderly individuals. We conclude that ageing of adipose tissue accounts only partially for the alterations in adipose tissues of PLWH

    Hyperthermia Prevents In Vitro and In Vivo Biofilm Formation on Endotracheal Tubes

    Get PDF
    Animal model; Biofilm; HyperthermiaModel animal; Biofilm; HipertèrmiaModelo animal; Biofilm; HipertermiaThere is currently an urgent need to find new strategies to tackle antimicrobial resistance and biofilm-related infections. This study has two aims. First, we evaluated the in vitro efficacy of hyperthermia in preventing biofilm formation on the surfaces of polyvinyl chloride discs. Second, we assessed the in vivo efficacy of hyperthermia in preventing biofilm formation in endotracheal tubes (ETTs) of a rabbit model. For the in vitro studies, nine clinical extensively drug-resistant/multidrug-resistant Gram-negative isolates of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa and three clinical methicillin-resistant Staphylococcus aureus strains were studied. For biofilm formation, an adhesion step of 30 or 90 min followed by a growth step of 24 h were performed with application of one, two, and three pulses at 42°C for 15 min each pulse after the adhesion step. For the in vivo studies, New Zealand rabbits were intubated with ETTs previously colonized with K. pneumoniae or P. aeruginosa strains, and three pulses at 42°C for 15 min were applied after the adhesion step. The application of three pulses at 42°C for 15 min each pulse was needed to achieve the prevention of the in vitro biofilm formation of 100% of the tested strains. The application of heat pulses in a rabbit intubation model led to biofilm prevention of 85% against two K. pneumoniae strains and 80% against two P. aeruginosa strains compared to the control group. Hyperthermia application through pulses at 42°C could be a new nonantibiotic strategy to prevent biofilm formation in ETTs. IMPORTANCE Biofilm-producing microorganisms are considered medically crucial since they cause 80% of the infections that occur in the human body. Medical devices such as endotracheal tubes (ETTs) can act as a reservoir for pathogens providing the surface to which microorganisms can adhere and cause biofilm-associated infections in critically ill patients. This biofilm has been related with the development of ventilator-associated pneumonia (VAP), with an incidence of 8 to 28%, a mortality rate up to 17% and its associated high extra costs. Although some VAP-preventive measures have been reported, they have not demonstrated a significant reduction of VAP incidence. Therefore, we present a new nonantibiotic strategy based on hyperthermia application to prevent biofilm formation inside ETTs. This technology could reduce VAP incidence, intubation duration, hospital and intensive care unit (ICU) length stays, and mortality rates. Consequently, this could decrease the antibiotics administered and influence the impact of antibiotic resistance in the ICU.This study was supported by research grants from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (FIS 01162), la Marató TV3 (472/U/2018), the CaixaImpulse Program (Fundació “LaCaixa”), the Fundación para la Innovación y la Prospectiva en Salud en España (FIPSE 3932-21), and the Spanish Network for the Research in Infectious Diseases (REIPI RD19/0016)
    • …
    corecore