1,014 research outputs found

    Ontology-Based MEDLINE Document Classification

    Get PDF
    An increasing and overwhelming amount of biomedical information is available in the research literature mainly in the form of free-text. Biologists need tools that automate their information search and deal with the high volume and ambiguity of free-text. Ontologies can help automatic information processing by providing standard concepts and information about the relationships between concepts. The Medical Subject Headings (MeSH) ontology is already available and used by MEDLINE indexers to annotate the conceptual content of biomedical articles. This paper presents a domain-independent method that uses the MeSH ontology inter-concept relationships to extend the existing MeSH-based representation of MEDLINE documents. The extension method is evaluated within a document triage task organized by the Genomics track of the 2005 Text REtrieval Conference (TREC). Our method for extending the representation of documents leads to an improvement of 17% over a non-extended baseline in terms of normalized utility, the metric defined for the task. The SVMlight software is used to classify documents

    Sensitive and Scalable Online Evaluation with Theoretical Guarantees

    Full text link
    Multileaved comparison methods generalize interleaved comparison methods to provide a scalable approach for comparing ranking systems based on regular user interactions. Such methods enable the increasingly rapid research and development of search engines. However, existing multileaved comparison methods that provide reliable outcomes do so by degrading the user experience during evaluation. Conversely, current multileaved comparison methods that maintain the user experience cannot guarantee correctness. Our contribution is two-fold. First, we propose a theoretical framework for systematically comparing multileaved comparison methods using the notions of considerateness, which concerns maintaining the user experience, and fidelity, which concerns reliable correct outcomes. Second, we introduce a novel multileaved comparison method, Pairwise Preference Multileaving (PPM), that performs comparisons based on document-pair preferences, and prove that it is considerate and has fidelity. We show empirically that, compared to previous multileaved comparison methods, PPM is more sensitive to user preferences and scalable with the number of rankers being compared.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Fake View Analytics in Online Video Services

    Full text link
    Online video-on-demand(VoD) services invariably maintain a view count for each video they serve, and it has become an important currency for various stakeholders, from viewers, to content owners, advertizers, and the online service providers themselves. There is often significant financial incentive to use a robot (or a botnet) to artificially create fake views. How can we detect the fake views? Can we detect them (and stop them) using online algorithms as they occur? What is the extent of fake views with current VoD service providers? These are the questions we study in the paper. We develop some algorithms and show that they are quite effective for this problem.Comment: 25 pages, 15 figure

    Deformable Registration through Learning of Context-Specific Metric Aggregation

    Full text link
    We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.Comment: Accepted for publication in the 8th International Workshop on Machine Learning in Medical Imaging (MLMI 2017), in conjunction with MICCAI 201

    An Augmentation Hybrid System for Document Classification and Rating.

    Get PDF
    This paper introduces an augmentation hybrid system, referred to as Rated MCRDR. It uses Multiple Classification Ripple Down Rules (MCRDR), a simple and effective knowledge acquisition technique, combined with a neural network

    Using Linguistic Information and Machine Learning Techniques to Identify Entities from Juridical Documents

    Get PDF
    Information extraction from legal documents is an important and open problem. A mixed approach, using linguistic information and machine learning techniques, is described in this paper. In this approach, top-level legal concepts are identified and used for document classifica- tion using Support Vector Machines. Named entities, such as, locations, organizations, dates, and document references, are identified using se- mantic information from the output of a natural language parser. This information, legal concepts and named entities, may be used to popu- late a simple ontology, allowing the enrichment of documents and the creation of high-level legal information retrieval systems. The proposed methodology was applied to a corpus of legal documents - from the EUR-Lex site – and it was evaluated. The obtained results were quite good and indicate this may be a promising approach to the legal information extraction problem

    Controlling Fairness and Bias in Dynamic Learning-to-Rank

    Full text link
    Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.Comment: First two authors contributed equally. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval 202

    Enhancing Sensitivity Classification with Semantic Features using Word Embeddings

    Get PDF
    Government documents must be reviewed to identify any sensitive information they may contain, before they can be released to the public. However, traditional paper-based sensitivity review processes are not practical for reviewing born-digital documents. Therefore, there is a timely need for automatic sensitivity classification techniques, to assist the digital sensitivity review process. However, sensitivity is typically a product of the relations between combinations of terms, such as who said what about whom, therefore, automatic sensitivity classification is a difficult task. Vector representations of terms, such as word embeddings, have been shown to be effective at encoding latent term features that preserve semantic relations between terms, which can also be beneficial to sensitivity classification. In this work, we present a thorough evaluation of the effectiveness of semantic word embedding features, along with term and grammatical features, for sensitivity classification. On a test collection of government documents containing real sensitivities, we show that extending text classification with semantic features and additional term n-grams results in significant improvements in classification effectiveness, correctly classifying 9.99% more sensitive documents compared to the text classification baseline
    corecore