78 research outputs found

    British Gynaecological Cancer Society Recommendations for Evidence Based, Population Data Derived Quality Performance Indicators for Ovarian Cancer

    Get PDF
    Ovarian cancer survival in the UK lags behind comparable countries. Results from the ongoing National Ovarian Cancer Audit feasibility pilot (OCAFP) show that approximately 1 in 4 women with advanced ovarian cancer (Stage 2, 3, 4 and unstaged cancer) do not receive any anticancer treatment and only 51% in England receive international standard of care treatment, i.e., the combination of surgery and chemotherapy. The audit has also demonstrated wide variation in the percentage of women receiving anticancer treatment for advanced ovarian cancer, be it surgery or chemotherapy across the 19 geographical regions for organisation of cancer delivery (Cancer Alliances). Receipt of treatment also correlates with survival: 5 year Cancer survival varies from 28.6% to 49.6% across England. Here, we take a systems wide approach encompassing both diagnostic pathways and cancer treatment, derived from the whole cohort of women with ovarian cancer to set out recommendations and quality performance indicators (QPI). A multidisciplinary panel established by the British Gynaecological Cancer Society carefully identified QPI against criteria: metrics selected were those easily evaluable nationally using routinely available data and where there was a clear evidence base to support interventions. These QPI will be valuable to other taxpayer funded systems with national data collection mechanisms and are to our knowledge the only population level data derived standards in ovarian cancer. We also identify interventions for Best practice and Research recommendations

    Comparative analysis between shape memory alloy-based correction and traditional correction technique in pedicle screws constructs for treating severe scoliosis

    Get PDF
    The three-dimensional correction of severe rigid scoliosis has been improved by segmental pedicle screw instrumentation. However, there can be significant difficulty related to the use of a rigid rod, especially in the apex region of severe scoliosis. This study is a retrospective matched cohort study to evaluate the advantages of Nitinol shape memory alloy (SMA) rod-based correction by comparing the clinical and radiographic results obtained from using a temporary SMA rod and those from a standard rod in the correction of severe scoliosis. From May 2004 to September 2006, patients with matched curve type, ages at surgery, operative methods and fusion levels in our institute and instrumented with either SMA rods (n = 14) or traditional correction techniques (n = 16) were reviewed. In SMA group, the SMA rods served as a temporary intraoperative tool for deformity correction and were replaced by standard rods. The blood loss at surgery averaged 778 ± 285 ml in the traditional group and 585 ± 188 ml in the SMA group (P < 0.05). Operative time averaged 284 ± 53 min in the SMA group and 324 ± 41 min in the traditional group (P < 0.05). In the SMA group, the preoperative major curve was 92.6° ± 13.7° with a flexibility of 25.5 ± 7.3% was corrected to 29.4° ± 5.7° demonstrating a 68.4% immediate postoperative correction. In the traditional group, the preoperative major curve was 88.6° ± 14.6° with a flexibility of 29.3 ± 6.6% was corrected to 37.2° ± 7.3° demonstrating a 57.8% immediate postoperative correction. There was a statistic difference between the SMA group and traditional group in correction rate of the major thoracic curve. In the SMA group, one case suffered from deep infection 2 months postoperatively. In the traditional group, 6 of 16 cases suffered pedicle screw pull out or loosening during placement of the standard rod at the apex vertebrae on the concave side. In three cases, the mono-axial pedicle screws near the apex were abandoned and in five cases replaced with poly-axial pedicle screws. This study shows that the temporary use of SMA rod may reduce the operative time, blood loss, while improve the correction of the coronal plane when compared with standard techniques

    Feedback by massive stars and the emergence of superbubbles. II. X-ray properties

    Get PDF
    This article has an erratum M. Krause, et al., “Feedback by massive stars and the emergence of superbubbles. II. X-ray properties”, Astronomy & Astrophysics, Vol. 566, June 2014. This version of record is available online at: https://www.aanda.org/articles/aa/abs/2014/06/aa23871-14/aa23871-14.html Reproduced with Permission from Astronomy and Astrophysics, © ESO 2014.Context. In a previous paper we investigated the energy transfer of massive stars to the interstellar medium (ISM) as a function of time and the geometrical configuration of three massive stars via 3D-mesh-refining hydrodynamics simulations, following the complete evolution of the massive stars and their supernovaewith the exception of non-thermal processes. Aims. To compare our results against observations we derivethermalX-ray properties of the ISM from our simulations and compare them to observations of superbubbles in general, to the well-studied nearby Orion-Eridanus superbubble and to the diffuse soft X-ray emission of nearby galaxies. Methods. We analysed our ISM simulation results with the help of spectra for plasma temperatures between 0.1 and 10 keV and computed the spectral evolution and the spatio-temporal distribution of the hot gas. Results. Despite significant input of high-temperature gas from supernovae and fast stellar winds, the resultingthermalX-ray spectra are generally very soft, with most of the emission well below 1 keV. We show that this is due to mixing triggered by resolved hydrodynamic instabilities. Supernovae enhance the X-ray luminosity of a superbubble by 1–2 orders of magnitude for a time span of about 0.1 Myr; which is longer if a supernova occurs in a larger superbubble and shorter in higher energy bands. Peak superbubble luminosities of the order of 1036 erg s-1 are reproduced well. The strong decay of the X-ray luminosity is due to bubble expansion, hydrodynamic instabilities related to the acceleration of the superbubble’s shell thanks to the sudden energy input, and subsequent mixing. We also find global oscillations of our simulated superbubbles, which produce spatial variations of the X-ray spectrum, similar to what we see in the Orion-Eridanus cavity. We calculated the fraction of energy emitted in X-rays and find that with a value of a few times 10-4, it is about a factor of ten below the measurements for nearby galaxies. Conclusions. Our models explain the observed soft spectra and peak X-ray luminosities of individual superbubbles. Each supernova event inside a superbubble produces a fairly similar heating-entrainment-cooling sequence, and the energy content of superbubbles is always determined by a specific fraction of the energy released by one supernova. For a given superbubble, soft X-rays trace the internal energy content well with moderate scatter. Some mechanism seems to delay the energy loss in real superbubbles compared to our simulations. Alternatively, some mechanism other thanthermal emission ofsuperbubbles may contribute to the soft X-ray luminosity of star-forming galaxies.Peer reviewe

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    Full text link
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figure

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Physicians’ views and experiences of discussing weight management within routine clinical consultations: A thematic synthesis

    Get PDF
    Objective To systematically search and synthesise qualitative studies of physicians’ views and experiences of discussing weight management within a routine consultation. Methods A systematic search of four electronic databases identified 11,169 articles of which 16 studies met inclusion criteria. Quality was appraised using the Critical Appraisal Skills Programme tool and a thematic synthesis conducted of extracted data. Results Four analytical themes were found: (1) physicians’ pessimism about patients’ weight loss success (2) physicians’ feel hopeless and frustrated (3) the dual nature of the physician-patient relationship (4) who should take responsibility for weight management. Conclusion Despite clinical recommendations barriers remain during consultations between physicians and patients about weight management. Many of these barriers are potentially modifiable
    • 

    corecore