35 research outputs found
Recommended from our members
Evaluation of the geothermal resource in the area of Albuquerque, New Mexico
Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (100/sup 0/C/km) discovered in our drillholes, (7) deeper (50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth
Recommended from our members
Magnetotelluric observations across the Juan de Fuca subduction system in the EMSLAB project
A magnetotelluric (MT)transect has been obtained near latitude 45øN from the active Juan de Fuca
Spreading center, across the subduction zone and Cascades volcanic arc, and into the back arc Deschutes
Basin region. This paper presents the MT data set and describes its major characteristics as they pertain to
the resistivity of the subduction system. In addition, we discuss the measurement and processing
procedures employed as well as important concerns in data interpretation. Broadband audiomagnetotelluric
(AMT)/MT soundings( approx. 0.01-500 s period) were collected on land with considerable redundancy in
site location, and from which 39 sites were selected which constrain upper crustal heterogeneity but sense
also into the upper mantle. Fifteen long-period MT recordings (about 50-10,000 s) on land confirm the
broadband responses in their common period range and extend the depths of exploration to hundreds of
kilometers. On the Juan de Fuca plate offshore, 33 out of 39 sea floor instruments at 19 locations gave
good results. Of these locations, five magnetotelluric soundings plus two additional geomagnetic
variation sites, covering the period range 200-10^(5) s approximately, constitute the ocean bottom segment
of our profile. The feature of the land observations which probably relates most closely to the subduction
process is a peak in the impedance phase of the transverse magnetic mode around 30-50 s period. This
phase anomaly, with a corresponding inflection in the apparent resistivity, is continuous eastward from
the seacoast and ends abruptly at the High Cascades. It signifies an electrically conductive layer in
otherwise resistive lower crust or upper mantle, with the layer conductance decreasing eastward from the
coast to a minimum under the Coast Range but increasing suddenly to the east of the central Willamette
Basin. The higher conductance to the east is corroborated by the vertical magnetic field transfer function
whose real component shows negative values in the period range 100-1000 s over the same distance. The
transverse electric mode apparent resistivity and phase on the land display a variety of three-dimensional
effects which make their interpretation difficult. Conversely, both modes of the ocean floor soundings
exhibit a smooth progression laterally from the coastal area to the spreading ridge, indicating that the
measurements here are reflecting primarily the large-scale tectonic structures of interest and are little
disturbed by small near-surface inhomogeneities. The impedance data near the ridge are strongly
suggestive of a low-resistivity asthenosphere beneath resistive Juan de Fuca plate lithosphere.
Approaching the coastline to the east, both impedance and vertical magnetic field responses appear
increasingly affected by a thick wedge of deposited and accreted sediments and by the thinning of the
seawater
Recommended from our members
Structure of the Espanola Basin, Rio Grande Rift, New Mexico, from SAGE seismic and gravity data
Seismic and gravity data, acquired by the SAGE program over the past twelve years, are used to define the geometry of the Espanola basin and the extent of pre-Tertiary sedimentary rocks. The Paleozoic and Mesozoic units have been thinned and removed during Laramide uplift in an area now obscured by the younger rift basin. The Espanola basin is generally a shallow, asymmetric transitional structure between deeper, better developed basins to the northeast and southwest. The gravity data indicate the presence of three narrow, but deep, structural lows arrayed along the Embudo/Pajarito fault system. These sub-basins seem to be younger than the faults on the basin margins. This apparent focussing of deformation in the later history of the basin may be a response to changes in regional stress or more local accommodation of the rift extension. Future work is planned to develop seismic data over one of these sub-basins, the Velarde graben, and to better define the gravity map in order to facilitate three-dimensional modeling
Recommended from our members
Geothermal application feasibility study for the New Mexico State University campus. Technical report
The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR
Recommended from our members
Evaluation of Geothermal Potential of The Basin and Range Province of New Mexico. Technical Report.
This continuing research is designed to provide an integrated geological, geophysical, and geochemical study of the geothermal energy potential of promising thermal anomalies in the Rio Grande rift, Basin and Range province, the Mogollon--Datil volcanic field of New Mexico. Specific objectives undertaken in this study include the following: (a) reconnaissance and detailed geologic mapping (Animas Valley, Radium Springs, Alum Mountain, Truth or Consequences, Ojo Caliente, Albuquerque---Belene basin, and San Ysidro); (b) geochemical studies including reconnaissance water sampling (Animas Valley, Radium Springs and Alum Mountain); and (c) geophysical surveys using deep electric-resistivity, gravity, and magnetic techniques (Radium Springs, Animas Valley and Truth or Consequences). The results of one and one-half summer field seasons and approximately two years of analytical work, laboratory research, and development of research equipment and facilities are covered. Publications, communications, and public service resulting from the first years of U.S.G.S. and State funding are listed in Appendix A
Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling
Traveltime data from the 1993 Southern Sierra Nevada Continental Dynamics seismic refraction experiment reveal low crustal velocities in the southern Sierra Nevada and Basin and Range province of California (6.0 to 6.6 km/s), as well as low upper mantle velocities (7.6 to 7.8 km/s). The crust thickens from southeast to northwest along the axis of the Sierra Nevada from 27 km in the Mojave Desert to 43 km near Fresno, California. A crustal welt is present beneath the Sierra Nevada, but the deepest Moho is found under the western slopes, not beneath the highest topography. A density model directly derived from the crustal velocity model but with constant mantle density satisfies the pronounced negative Bouguer anomaly associated with the Sierra Nevada, but shows large discrepancies of >50 mgal in the Great Valley and in the Basin and Range province. Matching the observed gravity with anomalies in the crust alone is not possible with geologically reasonable densities; we require a contribution from the upper mantle, either by lateral density variations or by a thinning of the lithosphere under the Sierra Nevada and the Basin and Range province. Such a model is consistent with the interpretation that the uplift of the present Sierra Nevada is caused and dynamically supported by asthenospheric upwelling or lithospheric thinning under the Basin and Range province and eastern Sierra Nevada