87 research outputs found

    Atomic Ramsey interferometry with S- and D-band in a triangular optical lattice

    Full text link
    Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first time. The key to realizing this interferometer in two-dimensionally coupled lattice is that we use the shortcut method to construct π/2\pi/2 pulse. We observe clear Ramsey fringes and analyze the decoherence mechanism of fringes. Further, we design an echo π\pi pulse between S- and D-band, which significantly improves the coherence time. This Ramsey interferometer in the dimensionally coupled lattice has potential applications in the quantum simulations of topological physics, frustrated effects, and motional qubits manipulation

    Relationship between hydrogeochemical characteristics of hot springs and seismic activity in the Jinshajiang fault zone, Southeast Tibetan Plateau

    Get PDF
    Significant anomalous hydrogeochemical changes in hot spring water are detected during strong seismic cycles. It is now necessary to clarify the relationship between tectonic movements, earthquakes and the evolution of hot springs. In this paper, laboratory analyses of major, trace elements, ήD, ή18O and 87Sr/86Sr values of 28 hot spring waters in the Jinshajiang fault zone (JSJFZ) in the northwestern boundary of the Sichuan-Yunnan block were conducted. The results showed that the primary source of water for JSJFZ hot springs was atmospheric precipitation. The geothermal reservoir temperature variation based on the silicon enthalpy mixing model ranged from 73 to 272°C. And the circulation depth range was 1.2–5.4 km. The segmentation characteristics of the 87Sr/86Sr values were related to the influence of source rocks on groundwater cycle processes. A conceptual model of the hydrologic cycle of hot springs explained the spatial distribution of earthquakes associated with tectonic movements. The Batang segment had the strongest water-rock reaction, the highest reservoir temperature and the deepest circulation depth; meanwhile, it was also an earthquake prone area. The fluid circulation of the JSJFZ corresponds well with the seismicity, which indicates that the hydrological characteristics of the hot spring water in a fracture zone play a crucial role in receiving information on seismic activity

    East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR_(CPC))

    Get PDF
    Aerosols have significant and complex impacts on regional climate in East Asia. Cloud‐aerosol‐precipitation interactions (CAPI) remain most challenging in climate studies. The quantitative understanding of CAPI requires good knowledge of aerosols, ranging from their formation, composition, transport, and their radiative, hygroscopic, and microphysical properties. A comprehensive review is presented here centered on the CAPI based chiefly, but not limited to, publications in the special section named EAST‐AIRcpc concerning (1) observations of aerosol loading and properties, (2) relationships between aerosols and meteorological variables affecting CAPI, (3) mechanisms behind CAPI, and (4) quantification of CAPI and their impact on climate. Heavy aerosol loading in East Asia has significant radiative effects by reducing surface radiation, increasing the air temperature, and lowering the boundary layer height. A key factor is aerosol absorption, which is particularly strong in central China. This absorption can have a wide range of impacts such as creating an imbalance of aerosol radiative forcing at the top and bottom of the atmosphere, leading to inconsistent retrievals of cloud variables from space‐borne and ground‐based instruments. Aerosol radiative forcing can delay or suppress the initiation and development of convective clouds whose microphysics can be further altered by the microphysical effect of aerosols. For the same cloud thickness, the likelihood of precipitation is influenced by aerosols: suppressing light rain and enhancing heavy rain, delaying but intensifying thunderstorms, and reducing the onset of isolated showers in most parts of China. Rainfall has become more inhomogeneous and more extreme in the heavily polluted urban regions

    East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR_(CPC))

    Get PDF
    Aerosols have significant and complex impacts on regional climate in East Asia. Cloud‐aerosol‐precipitation interactions (CAPI) remain most challenging in climate studies. The quantitative understanding of CAPI requires good knowledge of aerosols, ranging from their formation, composition, transport, and their radiative, hygroscopic, and microphysical properties. A comprehensive review is presented here centered on the CAPI based chiefly, but not limited to, publications in the special section named EAST‐AIRcpc concerning (1) observations of aerosol loading and properties, (2) relationships between aerosols and meteorological variables affecting CAPI, (3) mechanisms behind CAPI, and (4) quantification of CAPI and their impact on climate. Heavy aerosol loading in East Asia has significant radiative effects by reducing surface radiation, increasing the air temperature, and lowering the boundary layer height. A key factor is aerosol absorption, which is particularly strong in central China. This absorption can have a wide range of impacts such as creating an imbalance of aerosol radiative forcing at the top and bottom of the atmosphere, leading to inconsistent retrievals of cloud variables from space‐borne and ground‐based instruments. Aerosol radiative forcing can delay or suppress the initiation and development of convective clouds whose microphysics can be further altered by the microphysical effect of aerosols. For the same cloud thickness, the likelihood of precipitation is influenced by aerosols: suppressing light rain and enhancing heavy rain, delaying but intensifying thunderstorms, and reducing the onset of isolated showers in most parts of China. Rainfall has become more inhomogeneous and more extreme in the heavily polluted urban regions

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∌1013 GB\rm \sim 10^{13}~G, D∌6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Limited-length suffix-array-based method for variable-length motif discovery in time series

    No full text
    In this paper, we explore two key problems in time series motif discovery: releasing the constraints of trivial matching between subsequences with different lengths and improving the time and space efficiency. The purpose of avoiding trivial matching is to avoid too much repetition between subsequences in calculating their similarities. We describe a limited-length enhanced suffix array based framework (LiSAM) to resolve the two problems. Experimental results on Electrocardiogram signals indicate the accuracy of LiSAM on finding motifs with different lengths
    • 

    corecore