14 research outputs found

    Circulating Plasma MicroRNAs As Diagnostic Markers for NSCLC

    Get PDF
    Lung cancer is the most common cause of cancer deaths all over the world, in which non-small cell lung cancer (NSCLC) accounts for ~85% of cases. It is well known that microRNAs (miRNAs) play a critical role in various cellular processes, mediating post-transcriptional silencing either by mRNA degradation through binding the 3' UTR of target mRNA or by translational inhibition of the protein. In the past decade, miRNAs have also been increasingly identified in biological fluids such as human serum or plasma known as circulating or cell-free miRNAs, and may function as non-invasive diagnostic markers for various cancer types including NSCLC. Circulating tumor cells (CTCs) are those cells that are shed from solid tumors and then migrate into the circulation. However, reports concerning the roles of CTCs are quite rare, which may be attributed to the difficulties in the enrichment and detection of CTCs in the circulation. Although, there have been reassuring advances in identifying circulating miRNA-panels, which are assumed to be of diagnostic value in NSCLC early stage, some issues remain concerning the reliability of using miRNA panels as a diagnostic tool for NSCLC. In the current review, we are aiming at providing insights into the miRNAs biology, the mechanisms of miRNAs release into the bloodstream, cell-free miRNAs as the diagnostic markers for NSCLC and the current limitations of CTCs as diagnostic markers in NSCLC.Department of Health Technology and Informatic

    Investigating causal relationships between the gut microbiota and allergic diseases: A mendelian randomization study

    Get PDF
    Observational studies revealed altered gut microbial composition in patients with allergic diseases, which illustrated a strong association between the gut microbiome and the risk of allergies. However, whether such associations reflect causality remains to be well-documented. Two-sample mendelian randomization (2SMR) was performed to estimate the potential causal effect between the gut microbiota and the risk of allergic diseases. 3, 12, and 16 SNPs at the species, genus, and family levels respectively of 15 microbiome features were obtained as the genetic instruments of the exposure dataset from a previous study. GWAS summary data of a total of 17 independent studies related to allergic diseases were collected from the IEU GWAS database for the outcome dataset. Significant causal relationships were obtained between gut microbiome features including Ruminococcaceae, Eggerthella, Bifidobacterium, Faecalibacterium, and Bacteroides and the risk of allergic diseases. Furthermore, our results also pointed out a number of putative associations between the gut microbiome and allergic diseases. Taken together, this study was the first study using the approach of 2SMR to elucidate the association between gut microbiome and allergic diseases

    MiR-574-5p Activates Human TLR8 to Promote Autoimmune Signaling and Lupus

    Get PDF
    Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis

    Dissecting the effects of METTL3 on alternative splicing in prostate cancer

    Get PDF
    Although the role of METTL3 has been extensively studied in many cancers, its role in isoform switching in prostate cancer (PCa) has been poorly explored. To investigate its role, we applied standard RNA-sequencing and long-read direct RNA-sequencing from Oxford Nanopore to examine how METTL3 affects alternative splicing (AS) in two PCa cell lines. By dissecting genome-wide METTL3-regulated AS events, we noted that two PCa cell lines (representing two different PCa subtypes, androgen-sensitive or resistant) behave differently in exon skipping and intron retention events following METTL3 depletion, suggesting AS heterogeneity in PCa. Moreover, we revealed that METTL3-regulated AS is dependent on N6-methyladenosine (m6A) and distinct splicing factors. Analysis of the AS landscape also revealed cell type specific AS signatures for some genes (e.g., MKNK2) involved in key functions in PCa tumorigenesis. Finally, we also validated the clinical relevance of MKNK2 AS events in PCa patients and pointed to the possible regulatory mechanism related to m6A in the exon14a/b region and SRSF1. Overall, we characterize the role of METTL3 in regulating PCa-associated AS programs, expand the role of METTL3 in tumorigenesis, and suggest that MKNK2 AS events may serve as a new potential prognostic biomarker

    Circulating plasma microRNAs as diagnostic markers for NSCLC

    No full text
    Lung cancer is the most common cause of cancer deaths all over the world, in which non-small cell lung cancer (NSCLC) alone accounts for ~85% of cases. It is well known that microRNAs (miRNAs) play a critical role in various cellular processes, mediating post-transcriptional silencing either by mRNA degradation through binding the 3’ UTR of target mRNA or by the translational inhibition of the protein. In the past decade, miRNAs have also been increasingly identified in the biological fluids such as human serum or plasma named as circulating or cell-free miRNAs, and may function as non-invasive diagnostic markers of cancers including NSCLC. Circulating tumor cells (CTCs), a non-invasive liquid biopsy, are those cells that are shed from solid tumors and then migrate into the circulation. However, reports concerning the role of CTCs are quite rare, which may be attributed to the difficulties in the enrichment and detection of CTCs in the circulation. Although there have been reassuring advances in identifying circulating miRNA-panels, which is assumed to be of diagnostic value in NSCLC early stage, some issues remain concerning the reliability of using miRNA panels as a diagnostic tool for NSCLC. In the current review, we are aiming at providing insights into the miRNAs biology, the mechanisms involved in the miRNAs release into bloodstream, cell-free miRNAs as the diagnostic marker of NSCLC, and the current limitations of CTCs as diagnostic markers in NSCLC

    DataSheet1_Investigating causal relationships between the gut microbiota and allergic diseases: A mendelian randomization study.PDF

    No full text
    Observational studies revealed altered gut microbial composition in patients with allergic diseases, which illustrated a strong association between the gut microbiome and the risk of allergies. However, whether such associations reflect causality remains to be well-documented. Two-sample mendelian randomization (2SMR) was performed to estimate the potential causal effect between the gut microbiota and the risk of allergic diseases. 3, 12, and 16 SNPs at the species, genus, and family levels respectively of 15 microbiome features were obtained as the genetic instruments of the exposure dataset from a previous study. GWAS summary data of a total of 17 independent studies related to allergic diseases were collected from the IEU GWAS database for the outcome dataset. Significant causal relationships were obtained between gut microbiome features including Ruminococcaceae, Eggerthella, Bifidobacterium, Faecalibacterium, and Bacteroides and the risk of allergic diseases. Furthermore, our results also pointed out a number of putative associations between the gut microbiome and allergic diseases. Taken together, this study was the first study using the approach of 2SMR to elucidate the association between gut microbiome and allergic diseases.</p

    Table1_Investigating causal relationships between the gut microbiota and allergic diseases: A mendelian randomization study.DOCX

    No full text
    Observational studies revealed altered gut microbial composition in patients with allergic diseases, which illustrated a strong association between the gut microbiome and the risk of allergies. However, whether such associations reflect causality remains to be well-documented. Two-sample mendelian randomization (2SMR) was performed to estimate the potential causal effect between the gut microbiota and the risk of allergic diseases. 3, 12, and 16 SNPs at the species, genus, and family levels respectively of 15 microbiome features were obtained as the genetic instruments of the exposure dataset from a previous study. GWAS summary data of a total of 17 independent studies related to allergic diseases were collected from the IEU GWAS database for the outcome dataset. Significant causal relationships were obtained between gut microbiome features including Ruminococcaceae, Eggerthella, Bifidobacterium, Faecalibacterium, and Bacteroides and the risk of allergic diseases. Furthermore, our results also pointed out a number of putative associations between the gut microbiome and allergic diseases. Taken together, this study was the first study using the approach of 2SMR to elucidate the association between gut microbiome and allergic diseases.</p

    Table2_Investigating causal relationships between the gut microbiota and allergic diseases: A mendelian randomization study.DOCX

    No full text
    Observational studies revealed altered gut microbial composition in patients with allergic diseases, which illustrated a strong association between the gut microbiome and the risk of allergies. However, whether such associations reflect causality remains to be well-documented. Two-sample mendelian randomization (2SMR) was performed to estimate the potential causal effect between the gut microbiota and the risk of allergic diseases. 3, 12, and 16 SNPs at the species, genus, and family levels respectively of 15 microbiome features were obtained as the genetic instruments of the exposure dataset from a previous study. GWAS summary data of a total of 17 independent studies related to allergic diseases were collected from the IEU GWAS database for the outcome dataset. Significant causal relationships were obtained between gut microbiome features including Ruminococcaceae, Eggerthella, Bifidobacterium, Faecalibacterium, and Bacteroides and the risk of allergic diseases. Furthermore, our results also pointed out a number of putative associations between the gut microbiome and allergic diseases. Taken together, this study was the first study using the approach of 2SMR to elucidate the association between gut microbiome and allergic diseases.</p

    DataSheet2_Investigating causal relationships between the gut microbiota and allergic diseases: A mendelian randomization study.PDF

    No full text
    Observational studies revealed altered gut microbial composition in patients with allergic diseases, which illustrated a strong association between the gut microbiome and the risk of allergies. However, whether such associations reflect causality remains to be well-documented. Two-sample mendelian randomization (2SMR) was performed to estimate the potential causal effect between the gut microbiota and the risk of allergic diseases. 3, 12, and 16 SNPs at the species, genus, and family levels respectively of 15 microbiome features were obtained as the genetic instruments of the exposure dataset from a previous study. GWAS summary data of a total of 17 independent studies related to allergic diseases were collected from the IEU GWAS database for the outcome dataset. Significant causal relationships were obtained between gut microbiome features including Ruminococcaceae, Eggerthella, Bifidobacterium, Faecalibacterium, and Bacteroides and the risk of allergic diseases. Furthermore, our results also pointed out a number of putative associations between the gut microbiome and allergic diseases. Taken together, this study was the first study using the approach of 2SMR to elucidate the association between gut microbiome and allergic diseases.</p

    Unique Gut Microbiome Signatures among Adult Patients with Moderate to Severe Atopic Dermatitis in Southern Chinese

    No full text
    Imbalance of the immune system caused by alterations of the gut microbiome is considered to be a critical factor in the pathogenesis of infant eczema, but the exact role of the gut microbiome in adult atopic dermatitis (AD) patients remains to be clarified. To investigate the differences of the gut microbiome between adult AD patients and healthy individuals, stool samples of 234 adults, containing 104 AD patients and 130 healthy subjects, were collected for 16S rRNA gene amplicon. Altered structure and metabolic dysfunctions of the gut microbiome were identified in adult AD patients. Our results illustrated that the adult AD patients were more likely to have allergies, particularly non-food allergies. In addition, the gut microbiome composition of the AD and normal groups were considerably different. Moreover, Romboutsia and Clostridi-um_sensu_stricto_1 was enriched in the normal group, whereas Blautia, Butyricicoccus, Lachnoclostridium, Eubacterium_hallii_group, Erysi-pelatoclostridium, Megasphaera, Oscillibacter, and Flavonifractor dominated in the AD group. Additionally, purine nucleotide degradation pathways were significantly enriched in the AD group, and the enrichment of proteinogenic amino acid biosynthesis pathways was found in the normal group. This study provides insights into new therapeutic strategies targeting the gut microbiome for AD and evidence for the involvement of the gut–skin axis in AD patients
    corecore