17 research outputs found

    Point prevalence surveys of antimicrobial use among eight neonatal intensive care units in India: 2016

    Get PDF
    BACKGROUND: Information about antimicrobial use is scarce and poorly understood among neonatal intensive care units (NICUs) in India. In this study, we describe antimicrobial use in eight NICUs using four point prevalence surveys (PPSs). METHODS: As part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) study, one-day, cross-sectional, hospital-based PPSs were conducted four times between 1 February 2016 and 28 February 2017 in eight NICUs. Using a standardized web-based electronic data entry form, detailed data were collected for babies on antimicrobials. RESULTS: A total of 403 babies were admitted to NICUs across all survey days, and 208 (51.6%) were prescribed one or more antimicrobials. Among 208 babies, 155 (74.5%) were prescribed antimicrobials for treatment of an active infection. Among 155 babies with an active infection, treatment was empiric in 109 (70.3%). Sepsis (108, 49.1%) was the most common reason for prescribing antimicrobials. Amikacin (17%) followed by meropenem (12%) were the two most commonly prescribed antimicrobials. For community-acquired sepsis, piperacillin-tazobactam (17.5%) was the most commonly prescribed drug. A combination of ampicillin and gentamicin was prescribed in only two babies (5%). CONCLUSIONS: The recommended first-line antimicrobial agents, ampicillin and gentamicin, were rarely prescribed in Indian NICUs for community acquired neonatal sepsis

    Global diversity and antimicrobial resistance of typhoid fever pathogens: insights from a meta-analysis of 13,000 Salmonella Typhi genomes

    Get PDF
    Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal ‘sentinel’ surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium’s aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies

    <i>Phylogenetic distribution of contemporary Indian S</i>. <i>Paratyphi A isolates in a global context</i>: Rooted maximum likelihood phylogenetic tree of contemporary Indian <i>S</i>. Paratyphi A (<i>n = 152)</i>, combined with global genome collection (<i>n = 400</i>) representing the current global distribution.

    No full text
    The tree was derived from 4286 SNPs mapped against the reference genome of S. Paratyphi ATCC 9150 (Accession No: CP000026.1) using Snippy and rooted to the outgroup strain (ERR028986: Lineage G). Red-colored dots at the tip of the branches indicates the position of this study isolates. Contemporary Indian S. Paratyphi A isolates of this study were found distributed across the global tree with both lineages A, C and F. Genomes with their respective metadata are labeled as color strips and key for each variable were mentioned. Strip 1 and 2 indicate the location and 3 represent MLST of each isolate. Heatmap represents the QRDR mutations that confer resistance to fluoroquinolone and the presence of plasmids. The scale bar indicates substitutions per site. Color keys for all the variables are given in the inset legend. The tree was visualized and labeled using iTOL (https://itol.embl.de/).</p
    corecore