282 research outputs found

    Simulation of the calcination of a core-in-shell CuO/CaCO 3 particle for Ca–Cu chemical looping

    Get PDF
    The internal heat balance through heat generation due to CuO reduction and its consumption by CaCO3 decomposition makes calcination a critical step in a novel Ca–Cu chemical looping process (CaL–CLC). Thus, the calcination behaviour of composite Ca/Cu particles needs to be well understood, especially taking into account that mismatching of heat generation and consumption in the particles can lead to local superheating, agglomeration and loss of activity due to enhanced sintering. In this work, a composite particle model was developed to study the calcination behaviour within a spherical core-in-shell type of particle containing grains of CuO and CaCO3. Simulation results showed that ambient temperature, shell porosity, particle size, and CaCO3 grain size significantly affected the CuO and CaCO3 reaction processes, while the impact of initial particle temperature and CuO grain size can be ignored in the range of parameters considered in the study. By comparison of different types of particles, it was concluded that the core-in-shell pattern was more advantageous if such particles are being applied in CaL–CLC cycles due to better matching in reaction kinetics resulting in more stable and uniform particle temperature distribution during the calcination stage

    Compatibility of NiO/CuO in Ca‐Cu chemical looping for high‐purity H2 production with CO2 capture

    Get PDF
    Ca‐Cu chemical looping is a novel and promising approach in converting methane into pure H2 following the principle of sorption‐enhanced reforming. Its operational efficiency is largely determined by an appropriate coexistence of Cu‐based oxygen carriers and Ni‐based catalysts. In this work, NiO/CuO composites were synthesized and their catalytic activity for H2 production was measured using a fixed‐bed reactor system equipped with an online gas analyzer. It is reported for the first time that the presence of CuO could hinder the activity of Ni‐based catalysts in H2 production, and experimental results show that the negative effect of CuO is strengthened with increasing CuO content and calcination temperature during sample preparation. With the help of a series of specific test and characterization techniques (SEM‐EDS, BET, XRD, TPR and XPS), interaction rules between NiO and CuO was further investigated and understood, and based on that an action mechanism model was proposed. Furthermore, an arrangement of mixed particles that avoiding the intimate contact of CuO/NiO was suggested and tested, and a superior performance was demonstrated while observing no restrictions of CuO on Ni‐based catalysts in sorption‐enhanced steam‐methane reforming under the conditions of Ca‐Cu chemical looping

    Dealloyed porous gold anchored by: In situ generated graphene sheets as high activity catalyst for methanol electro-oxidation reaction

    Get PDF
    A novel one-step method to prepare the nanocomposites of reduced graphene oxide (RGO)/nanoporous gold (NPG) is realized by chemically dealloying an Al2Au precursor. The RGO nanosheets anchored on the surface of NPG have a cicada wing like shape and act as both conductive agent and buffer layer to improve the catalytic ability of NPG for methanol electro-oxidation reaction (MOR). This improvement can also be ascribed to the microstructure change of NPG in dealloying with RGO. This work inspires a facile and economic method to prepare the NPG based catalyst for MOR

    Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters

    Full text link
    Structured light, particularly in the terahertz frequency range, holds considerable potential for a diverse range of applications. However, the generation and control of structured terahertz radiation pose major challenges. In this work, we demonstrate a novel programmable spintronic emitter that can flexibly generate a variety of structured terahertz waves. This is achieved through the precise and high-resolution programming of the magnetization pattern on the emitter surface, utilizing laser-assisted local field cooling of an exchange-biased ferromagnetic heterostructure. Moreover, we outline a generic design strategy for realizing specific complex structured terahertz fields in the far field. Our device successfully demonstrates the generation of terahertz waves with diverse structured polarization states, including spatially separated circular polarizations, azimuthal or radial polarization states, and a full Poincare beam. This innovation opens a new avenue for designing and generating structured terahertz radiations, with potential applications in terahertz microscopy, communication, quantum information, and light-matter interactions

    Matching of kinetics of CaCO3 decomposition and CuO reduction with CH4 in Ca-Cu chemical looping

    Get PDF
    Ca-Cu chemical looping (CaL-CLC) based on calcium looping is a novel and promising process for CO capture. The concept utilizes the heat released from the exothermic reduction of CuO to support the endothermic regeneration of CaO-based sorbents. Therefore, it is important for the two major reactions to have matching kinetics. This work assesses kinetics of the two reactions in a calciner under the conditions of interest for CaL-CLC. The reaction rates of the decomposition of CaCO and reduction of CuO-based material with CH were measured in a TGA by varying the temperature and gas atmosphere, and two gas-solid reaction models were utilized for the determination of the kinetic parameters. On the basis of these results, a dynamic model was developed to investigate the simultaneous reduction of CuO and decomposition of CaCO in an adiabatic fixed-bed reactor operating at 1atm. The simulation results showed that the reduction of CuO completed extremely fast under all test conditions, and it could lead to hot spots in the calciner. It was found that addition of steam into the reducing gas could enhance the reaction rate of CaCO decomposition and help it match the fast rate of CuO reduction, then reduce the formation of hot spots. Also, steam could be used to control the movement of reaction front. Although CO could be used to control the reaction front as well, the higher CO partial pressure in CH was found to slow down the decomposition of CaCO leading to incomplete reaction

    CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1

    Get PDF
    <p>Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the <i>CERKL</i> (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. <i>In vitro</i> and <i>in vivo</i>, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.</p

    Application of different watershed units to debris flow susceptibility mapping: A case study of Northeast China

    Get PDF
    The main purpose of this study was to compare two types of watershed units divided by the hydrological analysis method (HWUs) and mean curvature method (CWUs) for debris flow susceptibility mapping (DFSM) in Northeast China. Firstly, a debris flow inventory map consisting of 129 debris flows and 129 non-debris flows was randomly divided into a ratio of 70% and 30% for training and testing. Secondly, 13 influencing factors were selected and the correlations between these factors and the debris flows were determined by frequency ration analysis. Then, two types of watershed units (HWUs and CWUs) were divided and logistic regression (LR), multilayer perceptron (MLP), classification and regression tree (CART) and Bayesian network (BN) were selected as the evaluation models. Finally, the predictive capabilities of the models were verified using the predictive accuracy (ACC), the Kappa coefficient and the area under the receiver operating characteristic curve (AUC). The mean AUC, ACC and Kappa of four models (LR, MLP, CART and BN) in the training stage were 0.977, 0.931, and 0.861, respectively, for the HWUs, while 0.961, 0.905, and 0.810, respectively, for the CWUs; in the testing stage, were 0.904, 0.818, and 0.635, respectively, for the HWUs, while 0.883, 0.800, and 0.601, respectively, for the CWUs, which showed that HWU model has a higher debris flow prediction performance compared with the CWU model. The CWU-based model can reflect the spatial distribution probability of debris flows in the study area overall and can be used as an alternative model

    2023 roadmap for potassium-ion batteries

    Get PDF
    The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape
    • 

    corecore