118 research outputs found

    High-Frequency Resonant SEPIC Converter With Wide Input and Output Voltage Ranges

    Get PDF
    This paper presents a resonant single-ended-primary-inductor-converter (SEPIC) converter and control method suitable for high frequency (HF) and very high frequency (VHF) dc-dc power conversion. The proposed design provides high efficiency over a wide input and output voltage range, up-and-down voltage conversion, small size, and excellent transient performance. In addition, a resonant gate drive scheme is presented that provides rapid startup and low-loss at HF and VHF frequencies. The converter regulates the output using an ON-OFF control scheme modulating at a fixed frequency (170 kHz). This control method enables fast transient response and efficient light-load operation while providing controlled spectral characteristics of the input and output waveforms. A hysteretic override technique is also introduced which enables the converter to reject load disturbances with a bandwidth much greater than the modulation frequency, limiting output voltage disturbances to within a fixed value. An experimental prototype has been built and evaluated. The prototype converter, built with two commercial vertical MOSFETs, operates at a fixed switching frequency of 20 MHz, with an input voltage range of 3.6-7.2 V, an output voltage range of 3-9 V, and an output power rating of up to 3 W. The converter achieves higher than 80% efficiency across the entire input voltage range at nominal output voltage and maintains good efficiency across the whole operating range

    Hepatic IKKε expression is dispensable for high-fat feeding-induced increases in liver lipid content and alterations in glucose tolerance

    Get PDF
    © 2020 the American Physiological Society. There are endocrine and immunological changes that occur during onset and progression of the overweight and obese states. The inhibitor of nuclear factor-κB kinase-ε (IKKε) was originally described as an inducible protein kinase; whole body gene deletion or systemic pharmaceutical targeting of this kinase improved insulin sensitivity and glucose tolerance in mice. To investigate the primary sites of action associated with IKKε during weight gain, we describe the first mouse line with conditional elimination of IKKε in the liver (IKKεAlb-/-). IKKεAlb-/- mice and littermate controls gain weight, show similar changes in body composition, and do not display any improvements in insulin sensitivity or whole body glucose tolerance. These studies were conducted using breeder chow diets and matched low- vs. high-fat diets. While glycogen accumulation in the liver is reduced in IKKεAlb-/- mice, lipid storage in liver is similar in IKKεAlb-/- mice and littermate controls. Our results using IKKεAlb-/-mice suggest that the primary action of this kinase to impact insulin sensitivity during weight gain lies predominantly within extrahepatic tissues

    Identifying market risk for substandard and falsified medicines

    Get PDF
    __Introduction:__ Substandard and falsified medicines undermine health systems. We sought to unravel the political and economic factors which drive the production of these products, and to explain how they reach patients. __Methods:__ We conducted in-depth case studies in China, Indonesia, Turkey and Romania. We reviewed academic papers and press reports (n = 840), developing semi-structured questionnaires. We interviewed regulators, policy-makers, pharmaceutical manufacturers, physicians, pharmacists, patients and academics (n=88). We coded data using NVivo software, and developed an analytic framework to assess national risks for substandard and falsified medicines. We tested the framework against cases reported to the World Health Organization, from countries at all income levels. __Results:__ We found that increasing political commitment to provision of universal health coverage has led to public procurement policies aimed at lowering prices of medical products. In response, legitimate, profit-driven pharmaceutical companies protect their margins by cutting costs, or withdrawing from less profitable markets, while distributors engage in arbitrage. Meanwhile, health providers sometimes protect profits by 'upselling' patients to medicines not covered by insurers. Cost-cutting can undermine quality assurance, leading to substandard or degraded medicines. Other responses contribute to shortages, irrational demand and high prices. All of these provide market opportunities for producers of falsified products; they also push consumers outside of the regular supply chain, providing falsifiers with easy access to customers. The analytic framework capturing these interactions explained cases in most high and middle-income settings; additional factors operate in the poorest countries. __Conclusions:__ Most efforts to secure medicine quality currently focus on product regulation. However, our research suggests market mechanisms are key drivers for poor quality medicines, including where political commitments to universal health coverage are under-resourced. We have developed a framework to guide country-specific, system-wide analysis. This can flag risks and pinpoint specific actions to protect medicine quality, and thus health

    Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance

    Get PDF
    Mechanosensitive ion channels transduce physical force into electrochemical signaling that underlies an array of fundamental physiological processes, including hearing, touch, proprioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small conductance (MscS) constitute a remarkably diverse superfamily of channels critical for management of osmotic pressure. Here, we present cryo-electron microscopy structures of a MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane region, which is reminiscent of the evolutionarily and architecturally unrelated mechanosensitive Piezo channels. Upon channel opening, the curved transmembrane domain of MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate a structural mechanism by which mechanosensitive channels open under increased membrane tension. Further, the shared structural feature between unrelated channels suggests the possibility of a unified mechanical gating mechanism stemming from membrane deformation induced by a non-planar transmembrane domain

    Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam

    Get PDF
    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity

    Is transcranial direct current stimulation, alone or in combination with antidepressant medications or psychotherapies, effective in treating major depressive disorder? A systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Transcranial direct current stimulation (tDCS) has shown mixed results for depression treatment. The efficacies of tDCS combination therapies have not been investigated deliberately. This review aims to evaluate the clinical efficacy of tDCS as a monotherapy and in combination with medication, psychotherapy, and ECT for treating adult patients with major depressive disorder (MDD) and identified the factors influencing treatment outcome measures (i.e. depression score, dropout, response, and remission rates). METHODS: The systematic review was performed in PubMed/Medline, EMBASE, PsycINFO, Web of Sciences, and OpenGrey. Two authors performed independent literature screening and data extraction. The primary outcomes were the standardized mean difference (SMD) for continuous depression scores after treatment and odds ratio (OR) dropout rate; secondary outcomes included ORs for response and remission rates. Random effects models with 95% confidence intervals were employed in all outcomes. The overall effect of tDCS was investigated by meta-analysis. Sources of heterogeneity were explored via subgroup analyses, meta-regression, sensitivity analyses, and assessment of publication bias. RESULTS: Twelve randomised, sham-controlled trials (active group: N = 251, sham group: N = 204) were included. Overall, the integrated depression score of the active group after treatment was significantly lower than that of the sham group (g = - 0.442, p = 0.017), and further analysis showed that only tDCS + medication achieved a significant lower score (g = - 0.855, p < 0.001). Moreover, this combination achieved a significantly higher response rate than sham intervention (OR = 2.7, p = 0.006), while the response rate remained unchanged for the other three therapies. Dropout and remission rates were similar in the active and sham groups for each therapy and also for the overall intervention. The meta-regression results showed that current intensity is the only predictor for the response rate. None of publication bias was identified. CONCLUSION: The effect size of tDCS treatment was obviously larger in depression score compared with sham stimulation. The tDCS combined selective serotonin re-uptake inhibitors is the optimized therapy that is effective on depression score and response rate. tDCS monotherapy and combined psychotherapy have no significant effects. The most important parameter for optimization in future trials is treatment strategy

    Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle

    Get PDF
    SummaryFatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity

    The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2

    Get PDF
    Although it is known that nano-TiO2or other nanoparticles can induce liver toxicities, the mechanisms and the molecular pathogenesis are still unclear. In this study, nano-anatase TiO2(5 nm) was injected into the abdominal cavity of ICR mice for consecutive 14 days, and the inflammatory responses of liver of mice was investigated. The results showed the obvious titanium accumulation in liver DNA, histopathological changes and hepatocytes apoptosis of mice liver, and the liver function damaged by higher doses nano-anatase TiO2. The real-time quantitative RT-PCR and ELISA analyses showed that nano-anatase TiO2can significantly alter the mRNA and protein expressions of several inflammatory cytokines, including nucleic factor-κB, macrophage migration inhibitory factor, tumor necrosis factor-α, interleukin-6, interleukin-1β, cross-reaction protein, interleukin-4, and interleukin-10. Our results also implied that the inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity
    • …
    corecore