34 research outputs found

    GENERATION OF CRACKS IN HIGHWAY EMBANKMENT ON BLACK COTTON SOIL

    Get PDF
    This research revealed the crack generation of the highway embankment from the water losing shrinkage of the wet black cotton soil (BCS), which is a type of soil with high swell-shrink potential. The road seepage meter was used to test the permeability of filling materials, which was used to replace BCS. The moisture content and embankment deflection of BCS foundation were measured after the rainy season. Based on the coupled consolidation theory for unsaturated soil, the change in additional tension stress of the embankment induced by water loss shrinkage of BCS was simulated by Abaqus. The results indicated that the rainfall seeped into the foundation through highly permeable refill materials to result in BCS expansion and decrease the embankment strength. After the rainy season, the additional tensile stress caused by water loss shrinkage of BCS induces cracking of highway embankment, and the maximum cracking depth often appears at the shoulder of highway. The deep and wide cracks are easy to appear in the low embankment constructed on a thick BCS foundation under strong evaporation

    Low-level light treatment ameliorates immune thrombocytopenia

    Get PDF
    Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP

    Cannabinoid Receptor Subtype 2 (Cb2R) Agonist Gw405833 Reduces Agonist-Induced Ca2+ Oscillations In Mouse Pancreatic Acinar Cells

    Get PDF
    Emerging evidence demonstrates that the blockade of intracellular Ca 2+ signals may protect pancreatic acinar cells against Ca 2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB 2 R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB 2 Rs modulate intracellular Ca 2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB 2 R agonist, GW405833 (GW) in agonist-induced Ca 2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB 1 R-knockout (KO), and CB 2 R-KO mice. Immunohistochemical labeling revealed that CB 2 R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB 2 Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca 2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB 2 R antagonist, AM630, or was absent in CB 2 R-KO but not CB 1 R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca 2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB 2 Rs eliminates ACh-induced Ca 2+ oscillations and L-arginine-induced enhancement of Ca 2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB 2 R-mediated protection in acute pancreatitis

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Estimation of the Wenchuan Earthquake Rupture Sequence Utilizing Teleseismic Records and Coseismic Displacements

    No full text
    For the 12 May 2008 Mw 7.9 Wenchuan earthquake, two imbricate faults, Beichuan fault and Pengguan fault, have ruptured simultaneously. Special attention should be paid to the point of 40 km northeast of the epicenter, in which the Xiaoyudong fault intersects the above two faults, creating a complex fault structure. Surface rupture data from field surveys and previous research of dynamics studies indicate that an important transformation may take place at the intersection. But, few studies about inversion of source rupture process have focused on this issue. We establish a multiple-segment, variable-slip, finite-fault model to reproduce the rupture process and distinguish rupture sequence. Based on the nonnegative least square method and multiple-time-window approach, the spatial and temporal distribution of slip for three rupture sequences are exhibited, using teleseismic records and coseismic displacements. The conformity between synthetic and observed teleseismic records as well as the slip value of the shallowest subfaults and the coseismic displacements is utilized to calibrate the model. The results are as follows: (1) The teleseismic records inversion alone could not distinguish different rupture sequences. However, in order to make the slip of the Hongkou and Yingxiu area coincide with the field investigation, only the Beichuan fault has a bilateral rupture on the point of intersection of Xiaoyudong fault. So the possible rupture sequence is that the earthquake started at the low dip angle part of southern Beichuan fault, and then it propagated to the Pengguan fault, which caused the rupture of Xiaoyudong fault. Then the southern part of Beichuan fault with high dip angle is triggered by the Xiaoyudong fault. (2) The coseismic displacements constraint can control the slip of subfaults near the surface and has little impact on the deeper subfaults. (3) The maximum slip on the fault is located near the Yingxiu and Beichuan area; moreover, the slip is mainly distributed at the shallow region rather than at the deep, which led to serious disasters. Meanwhile, majority of the aftershocks occur in the periphery of large slip

    Estimation of the Rupture History of the 2008 Mw8.0 Wenchuan Earthquake by Joint Inversion of Teleseismic and Strong-Motion Records

    No full text
    In order to reproduce the rupture history of the 2008 Mw8.0 Wenchuan earthquake, the teleseismic and strong-motion records are adopted. Based on a multiple-segment, variable-slip model, the finite fault inversion method is utilized to recover the rupture process. The results are as follows: (1) the rupture duration of the Wenchuan earthquake is about 100 s, and the released seismic moment is 1.24 × 1021 N·m, equal to the moment magnitude Mw8.0. There are 5 asperities on the fault plane, indicating that the earthquake is composed of at least 5 subevents. (2) The slip is mainly distributed on the Beichuan fault, indicating that the Beichuan fault is the main rupture fault. On the southern part of the Beichuan fault, the dislocation underside the Longmenshan area and Hongkou-Yingxiu near-surface area is dominated by thrust, and the maximum slip is 11.8 m. Slip between the Yuejiashan and Qingping area is dominated by thrust. On the northern part of the Beichuan fault, the area under Beichuan is dominated by thrust, the slip under Nanba is thrust and strike, near Qingchuan, the slip turns into the strike slip, and the maximum slip is 13.1 m. The dislocation under Bailu is also dominated by thrust, with maximum slip 8.9 m. (3) The rupture of the Wenchuan earthquake is mainly a unilateral rupture to the northeast. The rupture started at the low dip angle part of the Beichuan fault, and after 3 s, it propagated to the Pengguan fault. After 10 s, the largest asperity under Longmenshan in the south section of the Beichuan fault began to break, lasting for about 24 s. Then, the Xiaoyudong fault was triggered by the Pengguan fault, and the bilateral rupture of the high dip angle part of the Beichuan fault started at about 6 s. South section of the Beichuan fault began to break at about 35 s, and at 43 s, 63 s, and 80 s, the rupture extended to Beichuan, Nanba, and Qingchuan areas

    Variable selection for mode regression

    No full text
    corecore