4,726 research outputs found

    A Study on the Development of the Metal Mural

    Get PDF
    With the progress of human civilization, the appearance and development of the metal mural have provided people with dissimilar aesthetic perceptions and played diverse roles in different historical periods. And the application of different metallic materials in designing and producing murals has extended people’s perceptions in production and living, enriched the modeling language and manifestations of murals, and put forward higher demands for the exploration and promotion of new technique and technology. While beatifying the environment, the metal mural also enhances the artistic value of its own and the practical significance of metals. Starting with elaborating the origin of the metal mural, this paper discusses its development situation and current problems, and then advances some views on its advancement and innovation

    Topological superconductivity at the edge of transition metal dichalcogenides

    Full text link
    Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this paper, we propose a new realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer MX2 terminated by metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degree corner of a MX2 flake in proximity with a superconducting substrate

    Fast Approximate KK-Means via Cluster Closures

    Full text link
    KK-means, a simple and effective clustering algorithm, is one of the most widely used algorithms in multimedia and computer vision community. Traditional kk-means is an iterative algorithm---in each iteration new cluster centers are computed and each data point is re-assigned to its nearest center. The cluster re-assignment step becomes prohibitively expensive when the number of data points and cluster centers are large. In this paper, we propose a novel approximate kk-means algorithm to greatly reduce the computational complexity in the assignment step. Our approach is motivated by the observation that most active points changing their cluster assignments at each iteration are located on or near cluster boundaries. The idea is to efficiently identify those active points by pre-assembling the data into groups of neighboring points using multiple random spatial partition trees, and to use the neighborhood information to construct a closure for each cluster, in such a way only a small number of cluster candidates need to be considered when assigning a data point to its nearest cluster. Using complexity analysis, image data clustering, and applications to image retrieval, we show that our approach out-performs state-of-the-art approximate kk-means algorithms in terms of clustering quality and efficiency
    corecore