2,019 research outputs found

    Ecological model to predict potential habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in the mountainous regions, China

    Get PDF
    Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People's Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner.; Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively.; The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions

    Quantitative spectroscopic analysis of heterogeneous mixtures: the correction of multiplicative effects caused by variations in physical properties of samples

    Get PDF
    Spectral measurements of complex heterogeneous types of mixture samples are often affected by significant multiplicative effects resulting from light scattering, due to physical variations (e.g. particle size and shape, sample packing and sample surface, etc.) inherent within the individual samples. Therefore, the separation of the spectral contributions due to variations in chemical compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the multiplicative parameters accounting for multiplicative effects in each measured spectrum, and hence mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of heterogeneous samples. The basic assumption of the proposed method is that light scattering due to physical variations has the same effects on the spectral contributions of each of the spectroscopically active chemical component in the same sample mixture. Based on this underlying assumption, the proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple quadratic programming problem. The performance of the proposed method has been tested on two publicly available benchmark data sets (i.e. near-infrared total diffuse transmittance spectra of four-component suspension samples and near infrared spectral data of meat samples) and compared with some empirical approaches designed for the same purpose. It was found that the proposed method provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture samples can be achieved through the combination of spectroscopic techniques with smart modeling methodology

    catena-Poly[[trimethyl­tin(IV)]-μ-phenyl­seleninato-κ2 O:O′]

    Get PDF
    In the title polymeric coordination compound, [Sn(CH3)3(C6H5O2Se)]n, the SnIV atom has a distorted trigonal–bipyramidal geometry, with two O atoms of two symmetry-related bridging phenyl­seleninate anions in axial positions and three methyl groups in equatorial positions. In the crystal, the complex exhibits a chain structure parallel to the b axis

    Experience in prenatal ultrasound diagnosis of fetal microtia and associated abnormalities

    Get PDF
    ObjectivePrenatal ultrasound features, associated anomalies and genetic abnormalities of microtia cases were analyzed to explore the feasibility and value of prenatal ultrasound for the diagnosis of microtia.MethodsThe ultrasonographic features, associated anomalies, chromosome examination results and follow-up results of 81 fetuses with congenital microtia were analyzed retrospectively.ResultsAmong the 81 fetuses with microtia diagnosed after birth, 2 cases were missed diagnosis on prenatal ultrasound, and 1 case was diagnosed as unilateral microtia by prenatal ultrasound but was found to be bilateral microtia after birth. Microtia was accompanied by an accessory auricle in 4 cases (4.94%) and low-set ears in 7 cases (8.64%). 22 cases (27.16%) were complicated with other structural anomalies, including 11 cases (13.58%) of cardiac anomalies, 7 cases (8.64%) of ultrasonographic soft marker anomalies, 6 cases (7.41%) of facial anomalies, 6 cases (7.41%) of nervous system anomalies, 3 cases (3.70%) of urogenital system anomalies, 3 cases (3.70%) of digestive tract anomalies and 2 cases (2.47%) of limb anomalies. Chromosome karyotype analysis and gene detection were performed in 44 cases. Trisomy 18, trisomy 13, trisomy 21, pericentric inversion of chromosome 9, partial loss of heterozygosity on chromosome 14, 22q11 microdeletion and a normal karyotype were found in 2 cases, 2 cases, 3 cases, 1 case, 1 case, 1 case, and 34 cases, respectively.ConclusionIn summary, microtia is often accompanied by congenital defects of other organs and structures, especially the heart and face, and prenatal ultrasound diagnosis of microtia and associated anomalies is of important clinical significance

    An Approach to Discovering Product/Service Improvement Priorities : Using Dynamic Importance-Performance Analysis

    Get PDF
    This research was funded by the National Natural Science Foundation of China grant numbers 71772075, 71302153, and 71672074; the Technology R&D Foundation of Guangzhou, China grant number 201607010012; the Social Science Foundation of Guangzhou, China grant number 2018GZYB31; and the Foundation of Chinese Government Scholarship grant number 201806785010. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the above funding agencies.Peer reviewedPublisher PD

    catena-Poly[[triphenyl­tin(IV)]-μ-3-methyl­phenyl­seleninato-κ2 O:O′]

    Get PDF
    In the polymeric title coordination compound, [Sn(C6H5)3(C7H7O2Se)]n, the SnIV atom has a distorted trigonal–bipyramidal geometry, with two O atoms from two symmetry-related bridging seleninate ligands in axial positions and three phenyl groups in the equatorial plane. In the crystal, the complex exhibits a zigzag chain structure running parallel to the c axis. An intra­chain C—H⋯O hydrogen bond is observed

    Noise-Constrained Performance Optimization by Simultaneous Gate and Wire Sizing Based on Lagrangian Relaxation

    Get PDF
    Noise, as well as area, delay, and power, is one of the most important concerns in the design of deep sub-micron ICs. Currently existing algorithms can not handle simultaneous switching conditions of signals for noise minimization. In this paper, we model not only physical coupling capacitance, but also simultaneous switching behavior for noise optimization. Based on Lagrangian relaxation, we present an algorithm that can optimally solve the simultaneous noise, area, delay, and power optimization problem by sizing circuit components. Our algorithm, with linear memory requirement overall and linear runtime per iteration, is very effective and efficient. For example, for a circuit of 6144 wires and 3512 gates, our algorithm solves the simultaneous optimization problem using only 2.1 MB memory and 47 minute runtime to achieve the precision of within 1% error on a SUN UltraSPARC-I workstation
    corecore