20,536 research outputs found

    Comparing holographic dark energy models with statefinder

    Get PDF
    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the Λ\LambdaCDM model in the H(z)H(z) and q(z)q(z) evolutions. In particular, the HDE model is highly degenerate with the Λ\LambdaCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this low-redshift degeneracy in the H(z)H(z) and q(z)q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z)r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the Λ\LambdaCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z)H(z) and q(z)q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the rr--ss plane is also made, in which the separations between the models (including the Λ\LambdaCDM model) can be directly measured in the light of the current values {r0,s0}\{r_0,s_0\} of the models.Comment: 8 pages, 8 figures; accepted by European Physical Journal C; matching the publication versio

    Measuring the degree of unitarity for any quantum process

    Full text link
    Quantum processes can be divided into two categories: unitary and non-unitary ones. For a given quantum process, we can define a \textit{degree of the unitarity (DU)} of this process to be the fidelity between it and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, and is closely related to the noise of this quantum process. We derive analytical results of DU for qubit unital channels, and obtain the lower and upper bounds in general. The lower bound is tight for most of quantum processes, and is particularly tight when the corresponding DU is sufficiently large. The upper bound is found to be an indicator for the tightness of the lower bound. Moreover, we study the distribution of DU in random quantum processes with different environments. In particular, The relationship between the DU of any quantum process and the non-markovian behavior of it is also addressed.Comment: 7 pages, 2 figure

    Statefinder hierarchy exploration of the extended Ricci dark energy

    Get PDF
    We apply the statefinder hierarchy plus the fractional growth parameter to explore the extended Ricci dark energy (ERDE) model, in which there are two independent coefficients α\alpha and β\beta. By adjusting them, we plot evolution trajectories of some typical parameters, including Hubble expansion rate EE, deceleration parameter qq, the third and fourth order hierarchy S3(1)S_3^{(1)} and S4(1)S_4^{(1)} and fractional growth parameter ϵ\epsilon, respectively, as well as several combinations of them. For the case of variable α\alpha and constant β\beta, in the low-redshift region the evolution trajectories of EE are in high degeneracy and that of qq separate somewhat. However, the Λ\LambdaCDM model is confounded with ERDE in both of these two cases. S3(1)S_3^{(1)} and S4(1)S_4^{(1)}, especially the former, perform much better. They can differentiate well only varieties of cases within ERDE except Λ\LambdaCDM in the low-redshift region. For high-redshift region, combinations {Sn(1),ϵ}\{S_n^{(1)},\epsilon\} can break the degeneracy. Both of {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} have the ability to discriminate ERDE with α=1\alpha=1 from Λ\LambdaCDM, of which the degeneracy cannot be broken by all the before-mentioned parameters. For the case of variable β\beta and constant α\alpha, S3(1)(z)S_3^{(1)}(z) and S4(1)(z)S_4^{(1)}(z) can only discriminate ERDE from Λ\LambdaCDM. Nothing but pairs {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} can discriminate not only within ERDE but also ERDE from Λ\LambdaCDM. Finally we find that S3(1)S_3^{(1)} is surprisingly a better choice to discriminate within ERDE itself, and ERDE from Λ\LambdaCDM as well, rather than S4(1)S_4^{(1)}.Comment: 8 pages, 14 figures; published versio

    No evidence for the evolution of mass density power-law index γ\gamma from strong gravitational lensing observation

    Full text link
    In this paper, we consider the singular isothermal sphere lensing model that has a spherically symmetric power-law mass distribution ρtot(r)rγ\rho_{tot}(r)\sim r^{-\gamma}. We investigate whether the mass density power-law index γ\gamma is cosmologically evolutionary by using the strong gravitational lensing (SGL) observation, in combination with other cosmological observations. We also check whether the constraint result of γ\gamma is affected by the cosmological model, by considering several simple dynamical dark energy models. We find that the constraint on γ\gamma is mainly decided by the SGL observation and independent of the cosmological model, and we find no evidence for the evolution of γ\gamma from the SGL observation.Comment: 7 pages, 3 figure
    corecore