4,338 research outputs found

    Anisotropy in Inflation with Non-minimal Coupling

    Full text link
    We study a new anisotropic inflation model, with an inflaton field nonminimally coupled with the gravity and a vector field. We find that the anisotropic attractor solution exists not only in the weak curvature coupling limit, but more interestingly in the strong curvature coupling limit as well. We show that in the strong curvature coupling limit, the contribution from the anisotropy is greatly suppressed.Comment: V2, 12 pages, 3 figures, numerical analysis adde

    The electromagnetic and gravitational-wave radiations of X-ray transient CDF-S XT2

    Full text link
    Binary neutron star (NS) mergers may result in remnants of supra-massive or even stable NS, which have been supported indirectly by observed X-ray plateau of some gamma-ray bursts (GRBs) afterglow. Recently, Xue et al. (2019) discovered a X-ray transient CDF-S XT2 that is powered by a magnetar from merger of double NS via X-ray plateau and following stepper phase. However, the decay slope after the plateau emission is a little bit larger than the theoretical value of spin-down in electromagnetic (EM) dominated by losing its rotation energy. In this paper, we assume that the feature of X-ray emission is caused by a supra-massive magnetar central engine for surviving thousands of seconds to collapse black hole. Within this scenario, we present the comparisons of the X-ray plateau luminosity, break time, and the parameters of magnetar between CDF-S XT2 and other short GRBs with internal plateau samples. By adopting the collapse time to constrain the equation of state (EOS), we find that three EOSs (GM1, DD2, and DDME2) are consistent with the observational data. On the other hand, if the most released rotation energy of magnetar is dominated by GW radiation, we also constrain the upper limit of ellipticity of NS for given EOS, and it is range in [0.32−1.3]×10−3[0.32-1.3]\times 10^{-3}. Its GW signal can not be detected by aLIGO or even for more sensitive Einstein Telescope in the future.Comment: 13 pages, 5 figures,1 table. Accepted for publication by Research in Astronomy and Astrophysic

    Temporal Profiles and Spectral Lags of XRF 060218

    Get PDF
    The spectral and temporal properties of the non-thermal emission ofthe nearby XRF 060218 in 0.3-150 keV band are studied. We show that both the spectral energy distribution and the light curve properties suggest the same origin of the non-thermal emission detected by {\em Swift} BAT and XRT. This event has the longest pulse duration and spectral lag observed to date among the known GRBs. The pulse structure and its energy dependence are analogous to typical GRBs. By extrapolating the observed spectral lag to the {\em CGRO/BATSE} bands we find that the hypothesis that this event complies with the same luminosity-lag relation with bright GRBs cannot be ruled out at 2σ2\sigma significance level. These intriguing facts, along with its compliance with the Amati-relation, indicate that XRF 060218 shares the similar radiation physics as typical GRBs.Comment: 9 pages in emulateapj format, including 4 figures and 1 table, accepted for publication in ApJ Letter

    Exploring Anisotropic Lorentz Invariance Violation from the Spectral-Lag Transitions of Gamma-Ray Bursts

    Full text link
    The observed spectral lags of gamma-ray bursts (GRBs) have been widely used to explore possible violations of Lorentz invariance. However, these studies were generally performed by concentrating on the rough time lag of a single highest-energy photon and ignoring the intrinsic time lag at the source. A new way to test nonbirefringent Lorentz-violating effects has been proposed by analyzing the multi-photon spectral-lag behavior of a GRB that displays a positive-to-negative transition. This method gives both a plausible description of the intrinsic energy-dependent time lag and comparatively robust constraints on Lorentz-violating effects. In this work, we conduct a systematic search for Lorentz-violating photon dispersion from the spectral-lag transition features of 32 GRBs. By fitting the spectral-lag data of these 32 GRBs, we place constraints on a variety of isotropic and anisotropic Lorentz-violating coefficients with mass dimension d=6d=6 and 88. While our dispersion constraints are not competitive with existing bounds, they have the promise to complement the full coefficient space.Comment: 17 pages, 2 figures, 2 tables. Published by Universe. Constribution to the Special Issue "Advances in Astrophysics and Cosmology-in Memory of Prof. Tan Lu
    • …
    corecore