39,956 research outputs found

    Oblique Long Waves on Beach and Induced Longshore Current

    Get PDF
    This study considers the 3D runup of long waves on a uniform beach of constant or variable downward slope that is connected to an open ocean of uniform depth. An inviscid linear long-wave theory is applied to obtain the fundamental solution for a uniform train of sinusoidal waves obliquely incident upon a uniform beach of variable downward slope without wave breaking. For waves at nearly grazing incidence, runup is significant only for the waves in a set of eigenmodes being trapped within the beach at resonance with the exterior ocean waves. Fourier synthesis is employed to analyze a solitary wave and a train of cnoidal waves obliquely incident upon a sloping beach, with the nonlinear and dispersive effects neglected at this stage. Comparison is made between the present theory and the ray theory to ascertain a criterion of validity. The wave-induced longshore current is evaluated by finding the Stokes drift of the fluid particles carried by the momentum of the waves obliquely incident upon a sloping beach. Currents of significant velocities are produced by waves at incidence angles about 45 [degrees] and by grazing waves trapped on the beach. Also explored are the effects of the variable downward slope and curvature of a uniform beach on 3D runup and reflection of long waves

    Leptogenesis origin of Dirac gaugino dark matter

    Full text link
    The Dirac nature of the gauginos (and also the Higgsinos) can be realized in RR-symmetric supersymmetry models. In this class of models, the Dirac bino (or wino) with a small mixture of the Dirac Higgsinos is a good dark matter candidate. When the seesaw mechanism with Higgs triplet superfields is implemented to account for the neutrino masses and mixing, the leptogenesis driven by the heavy triplet decay is shown to produce not only the matter-antimatter asymmetry but also the asymmetric relic density of the Dirac gaugino dark matter. The dark matter mass turns out to be controlled by the Yukawa couplings of the heavy Higgs triplets, and it can be naturally at the weak scale for a mild hierarchy of the Yukawa couplings.Comment: 9 pages. Restructured for clear presentation, corrected some errors and typos. No change in conclusio

    Attenuation of ischemic liver injury by prostaglandin E<inf>1</inf> analogue, misoprostol, and prostaglandin I<inf>2</inf> analogue, OP-41483

    Get PDF
    Background: Prostaglandin has been reported to have protective effects against liver injury. Use of this agent in clinical settings, however, is limited because of drugrelated side effects. This study investigated whether misoprostol, prostaglandin E1 analogue, and OP-41483, prostaglandin I2 analogue, which have fewer adverse effects with a longer half-life, attenuate ischemic liver damage. Study Design: Thirty beagle dogs underwent 2 hours of hepatic vascular exclusion using venovenous bypass. Misoprostol was administered intravenously for 30 minutes before ischemia and for 3 hours after reperfusion. OP-41483 was administered intraportally for 30 minutes before ischemia (2 μg/kg/min) and for 3 hours after reperfusion (0.5 μg/kg/min). Animals were divided into five groups: untreated control group (n = 10); high-dose misoprostol (total 100 μg/kg) group (MP-H, n = 5); middle-dose misoprostol (50 μg/kg) group (MP-M, n = 5); low-dose misoprostol (25 μg/kg) group (MP-L, n = 5); and OP-41483 group (OP, n = 5). Animal survival, hepatic tissue blood flow (HTBF), liver function, and histology were analyzed. Results: Two-week animal survival rates were 30% in control, 60% in MP-H, 100% in MP-M, 80% in MP-L, and 100% in OP. The treatments with prostaglandin analogues improved HTBF, and attenuated liver enzyme release, adenine nucleotrides degradation, and histologic abnormalities. In contrast to the MP-H animals that exhibited unstable cardiovascular systems, the MP- M, MP-L, and OP animals experienced only transient hypotension. Conclusions: These results indicate that misoprostol and OP-41483 prevent ischemic liver damage, although careful dose adjustment of misoprostol is required to obtain the best protection with minimal side effects

    Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    Full text link
    We study technicolor models in which all of the technifermions are color-singlets, focusing on the case in these fermions transform according to the fundamental representation of the technicolor gauge group. Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing these technicolor sectors.Comment: 17 pages, latex, 2 figure

    Zero mode effect in the 1+1^{-+} four quark states

    Full text link
    We calculate the masses of the 1+1^{-+} four quark states which decay dominantly into ρπ\rho\pi and ηπ\eta\pi respectively by QCD sum rules approach. We include the zero mode contribution and find it plays an important role in the sum rules. We predict that the masses of the states ηπ\eta\pi and ρπ\rho\pi both are 1.4-1.5 GeV. This is close to the experimental candidates π1(1370)\pi_1(1370) and π1(1440)\pi_1(1440).Comment: 5 pages, 4 Postscript figure

    Multitemporal Relearning with Convolutional LSTM Models for Land Use Classification

    Get PDF
    In this article, we present a novel hybrid framework, which integrates spatial–temporal semantic segmentation with postclassification relearning, for multitemporal land use and land cover (LULC) classification based on very high resolution (VHR) satellite imagery. To efficiently obtain optimal multitemporal LULC classification maps, the hybrid framework utilizes a spatial–temporal semantic segmentation model to harness temporal dependency for extracting high-level spatial–temporal features. In addition, the principle of postclassification relearning is adopted to efficiently optimize model output. Thereby, the initial outcome of a semantic segmentation model is provided to a subsequent model via an extended input space to guide the learning of discriminative feature representations in an end-to-end fashion. Last, object-based voting is coupled with postclassification relearning for coping with the high intraclass and low interclass variances. The framework was tested with two different postclassification relearning strategies (i.e., pixel-based relearning and object-based relearning) and three convolutional neural network models, i.e., UNet, a simple Convolutional LSTM, and a UNet Convolutional-LSTM. The experiments were conducted on two datasets with LULC labels that contain rich semantic information and variant building morphologic features (e.g., informal settlements). Each dataset contains four time steps from WorldView-2 and Quickbird imagery. The experimental results unambiguously underline that the proposed framework is efficient in terms of classifying complex LULC maps with multitemporal VHR images

    Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction

    Get PDF
    High resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both, the collinear magnetic and paraelectric AF1 phase, and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio
    corecore