53,361 research outputs found
Nuclear Reactions Rates Governing the Nucleosynthesis of Ti44
Large excesses of Ca44 in certain presolar graphite and silicon carbide
grains give strong evidence for Ti44 production in supernovae. Furthermore,
recent detection of the Ti44 gamma-line from the Cas A SNR by CGRO/COMPTEL
shows that radioactive Ti44 is produced in supernovae. These make the Ti44
abundance an observable diagnostic of supernovae. Through use of a nuclear
reaction network, we have systematically varied reaction rates and groups of
reaction rates to experimentally identify those that govern Ti44 abundance in
core-collapse supernova nucleosynthesis. We survey the nuclear-rate dependence
by repeated calculations of the identical adiabatic expansion, with peak
temperature and density chosen to be 5.5xE9 K and 1E7 g/cc, respectively, to
approximate the conditions in detailed supernova models. We find that, for
equal total numbers of neutrons and protons (eta=0), Ti44 production is most
sensitive to the following reaction rates: Ti44(alpha,p)V47,
alpha(2alpha,gamma)C12, Ti44(alpha,gamma)Cr48, V45(p,gamma)Cr46. We tabulate
the most sensitive reactions in order of their importance to the Ti44
production near the standard values of currently accepted cross-sections, at
both reduced reaction rate (0.01X) and at increased reaction rate (100X)
relative to their standard values. Although most reactions retain their
importance for eta > 0, that of V45(p,gamma)Cr46 drops rapidly for eta >=
0.0004. Other reactions assume greater significance at greater neutron excess:
C12(alpha,gamma)O16, Ca40(alpha,gamma)Ti44, Al27(alpha,n)P30, Si30(alpha,n)S33.
Because many of these rates are unknown experimentally, our results suggest the
most important targets for future cross section measurements governing the
value of this observable abundance.Comment: 37 pages, LaTex, 17 figures, 8 table
Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K
A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was
produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing
the spatial distribution of the gases after time-of-flight expansion. Further,
the magnitude of the interspecies scattering length between the doubly spin
polarized states of 87Rb and 40K, |a_RbK|, was determined from
cross-dimensional thermal relaxation. The uncertainty in this collision
measurement was greatly reduced by taking the ratio of interspecies and
intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a
lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68,
043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory
would predict a threshold for mechanical instability that is inconsistent with
the experimentally observed onset for sudden loss of fermions in [G. Modugno et
al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio
Strongly Nonlinear Waves in Polymer Based Phononic Crystals
One dimensional "sonic vacuum"-type phononic crystals were assembled from chains of polytetrafluoroethylene (PTFE) beads and Parylene coated spheres with different diameters. It was demonstrated for the first time that these polymer-based granular system, with exceptionally low elastic modulus of particles, support the propagation of strongly nonlinear solitary waves with a very low speed. They can be described using classical nonlinear Hertz law despite the viscoelastic nature of the polymers and the high strain rate deformation of the contact area. Trains of strongly nonlinear solitary waves excited by an impact were investigated experimentally and were found to be in reasonable agreement with numerical calculations. Tunability of the signal shape and velocity was achieved through a non-contact magnetically induced precompression of the chains. This applied prestress allowed an increase of up to two times the solitary waves speed and significant delayed the signal splitting. Anomalous reflection at the interface of two "sonic vacua"-type systems was reported
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Hearing Conservation Program For Marching Band Members: A Risk For Noise-Induced Hearing Loss?
Purpose: To examine the risk for noise-induced hearing loss (NIHL) in university marching band members and to provide an overview of a hearing conservation program for a marching band. Method: Sound levels during band rehearsals were recorded and audiometric hearing thresholds and transient otoacoustic emission were measured over a 3-year period. Musician's earplugs and information about hearing loss were provided to the students. The hearing thresholds of other college students were tested as a partial control. Results: There were no significant differences in hearing thresholds between the two groups. During initial testing, more marching band members showed apparent high-frequency notches than control students. Follow-up hearing tests in a subsequent year for the marching band members showed that almost all notches disappeared. Persistent standard threshold shift (STS) across tests was not observed in the band members. Conclusion: Band members showed no evidence of STS or persistent notched audiograms. Because accepted procedures for measuring hearing showed a lack of precision in reliably detecting early NIHL in marching band members, it is recommended that signs of NIHL be sought in repeated measurements compared to baseline audiograms rather than in a single measure (a single notch). A hearing conservation program for this population is still recommended because of lengthy rehearsal times with high sound-level exposure during rehearsals.Communication Sciences and Disorder
Lamellar phase separation and dynamic competition in La0.23Ca0.77MnO3
We report the coexistence of lamellar charge-ordered (CO) and
charge-disordered (CD) domains, and their dynamical behavior, in
La0.23Ca0.77MnO3. Using high resolution transmission electron microscopy (TEM),
we show that below Tcd~170K a CD-monoclinic phase forms within the established
CO-orthorhombic matrix. The CD phase has a sheet-like morphology, perpendicular
to the q vector of the CO superlattice (a axis of the Pnma structure). For
temperatures between 64K and 130K, both the TEM and resistivity experiments
show a dynamic competition between the two phases: at constant T, the CD phase
slowly advances over the CO one. This slow dynamics appears to be linked to the
magnetic transitions occurring in this compound, suggesting important
magnetoelastic effects.Comment: 4 pages, 4 figure
Quantum Communication Through a Spin-Ring with Twisted Boundary Conditions
We investigate quantum communication between the sites of a spin-ring with
twisted boundary conditions. Such boundary conditions can be achieved by a flux
through the ring. We find that a non-zero twist can improve communication
through finite odd numbered rings and enable high fidelity multi-party quantum
communication through spin rings (working near perfectly for rings of 5 and 7
spins). We show that in certain cases, the twist results in the complete
blockage of quantum information flow to a certain site of the ring. This effect
can be exploited to interface and entangle a flux qubit and a spin qubit
without embedding the latter in a magnetic field.Comment: four pages two figure
- …