462 research outputs found

    Facile and time-resolved chemical growth of nanoporous CaxCoO2 thin films for flexible and thermoelectric applications

    Full text link
    CaxCoO2 thin films can be promising for widespread flexible thermoelectric applications in a wide temperature range from room-temperature self-powered wearable applications (by harvesting power from body heat) to energy harvesting from hot surfaces (e.g., hot pipes) if a cost-effective and facile growth technique is developed. Here, we demonstrate a time resolved, facile and ligand-free soft chemical method for the growth of nanoporous Ca0.35CoO2 thin films on sapphire and mica substrates from a water-based precursor ink, composed of in-situ prepared Ca2+-DMF and Co2+-DMF complexes. Mica serves as flexible substrate as well as sacrificial layer for film transfer. The grown films are oriented and can sustain bending stress until a bending radius of 15 mm. Despite the presence of nanopores, the power factor of Ca0.35CoO2 film is found to be as high as 0.50 x 10-4 Wm-1K-2 near room temperature. The present technique, being simple and fast to be potentially suitable for cost-effective industrial upscaling.Comment: 16 pages, 5 figure

    A New Approach to Predict the Thermal Conductivity of Composites with

    Get PDF
    An examination of the concept of a microgeometry proposed by Benveniste reveals that the thermal conductivity of the concentric sphere adopted by generalized self-consistent model (GSCM) is equal to that of the composite. It is also noted that the thermal conductivities of the composite with spherical fillers predicted by GSCM and modified Eshelby model (MEM) are the same. These equivalencies enable to propose a simple and alternative approach for determining the thermal conductivity of the composite with multiply coated spherical fillers by applying MEM repeatedly. The present result is compared and shows the exact agreement with the results from literatures
    • …
    corecore