21,009 research outputs found
Quantum Spin Chain, Toeplitz Determinants and Fisher-Hartwig Conjecture
We consider one-dimensional quantum spin chain, which is called XX model, XX0
model or isotropic XY model in a transverse magnetic field. We study the model
on the infinite lattice at zero temperature. We are interested in the entropy
of a subsystem [a block of L neighboring spins]. It describes entanglement of
the block with the rest of the ground state.
G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev showed that for large blocks
the entropy scales logarithmically. We prove the logarithmic formula for the
leading term and calculate the next term.
We discovered that the dependence on the magnetic field interacting with
spins is very simple: the magnetic field effectively reduce the size of the
subsystem.
We also calculate entropy of a subsystem of a small size. We also evaluated
Renyi and Tsallis entropies of the subsystem. We represented the entropy in
terms of a Toeplitz determinant and calculated the asymptotic analytically.Comment: LATEX, 17 pages, 1 fi
Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K
A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using
high-pressure and high-temperature synthesis. A Rietveld refinement based on
powder x-ray diffraction confirms that the superconductors crystallize in the
K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but
with partially occupied apical oxygen sites. It is found that the
superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y
superconductor with constant carrier doping level, i.e., constant d, is
controlled not only by order/disorder of apical-O atoms but also by Ba content.
Tcmax =98 K is achieved in the material with x=0.6 that reaches the record
value of Tc among the single-layer copper oxide superconductors, and is higher
than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is
Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The
result indicates that another effect surpasses the disorder effect that is
related either to the increased in-plane Cu-O bond length or to elongated
apical-O distance due to Ba substitution with larger cation size. The present
experiment demonstrates that the optimization of local geometry out of the Cu-O
plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
Comparison of Data Mining Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000596
With its growing emphasis on sustainability, the construction industry is increasingly interested in environmentally friendly concrete produced by using alternative and/or recycled waste materials. However, the wide application of such concrete is hindered by the lack of understanding of the impacts of these materials on concrete properties. This research investigates and compares the performance of nine data mining models in predicting the compressive strength of a new type of concrete containing three alternative materials as fly ash, Haydite lightweight aggregate, and portland limestone cement. These models include three advanced predictive models (multilayer perceptron, support vector machines, and Gaussian processes regression), four regression tree models (M5P, REPTree, M5-Rules, and decision stump), and two ensemble methods (additive regression and bagging) with each of the seven individual models used as the base classifier
Quantum Communication Through a Spin-Ring with Twisted Boundary Conditions
We investigate quantum communication between the sites of a spin-ring with
twisted boundary conditions. Such boundary conditions can be achieved by a flux
through the ring. We find that a non-zero twist can improve communication
through finite odd numbered rings and enable high fidelity multi-party quantum
communication through spin rings (working near perfectly for rings of 5 and 7
spins). We show that in certain cases, the twist results in the complete
blockage of quantum information flow to a certain site of the ring. This effect
can be exploited to interface and entangle a flux qubit and a spin qubit
without embedding the latter in a magnetic field.Comment: four pages two figure
- …