18,184 research outputs found
Performance Analysis of l_0 Norm Constraint Least Mean Square Algorithm
As one of the recently proposed algorithms for sparse system identification,
norm constraint Least Mean Square (-LMS) algorithm modifies the cost
function of the traditional method with a penalty of tap-weight sparsity. The
performance of -LMS is quite attractive compared with its various
precursors. However, there has been no detailed study of its performance. This
paper presents all-around and throughout theoretical performance analysis of
-LMS for white Gaussian input data based on some reasonable assumptions.
Expressions for steady-state mean square deviation (MSD) are derived and
discussed with respect to algorithm parameters and system sparsity. The
parameter selection rule is established for achieving the best performance.
Approximated with Taylor series, the instantaneous behavior is also derived. In
addition, the relationship between -LMS and some previous arts and the
sufficient conditions for -LMS to accelerate convergence are set up.
Finally, all of the theoretical results are compared with simulations and are
shown to agree well in a large range of parameter setting.Comment: 31 pages, 8 figure
Mechanism of phonon localized edge modes
The phonon localized edge modes are systematically studied, and two
conditions are proposed for the existence of the localized edge modes: (I)
coupling between different directions (, or ) in the interaction;
(II) different boundary conditions in three directions. The generality of these
two conditions is illustrated by different lattice structures: one-dimensional
(1D) chain, 2D square lattice, 2D graphene, 3D simple cubic lattice, 3D diamond
structure, etc; and with different potentials: valence force field model,
Brenner potential, etc.Comment: 5 pages, 8 fig
Graphene-based tortional resonator from molecular dynamics simulation
Molecular dynamics simulations are performed to study graphene-based
torsional mechanical resonators. The quality factor is calculated by
, where the frequency and life time are
obtained from the correlation function of the normal mode coordinate. Our
simulations reveal the radius-dependence of the quality factor as
, which yields a maximum value at some proper
radius . This maximum point is due to the strong boundary effect in the
torsional resonator, as disclosed by the temperature distribution in the
resonator. Resulting from the same boundary effect, the quality factor shows a
power law temperature-dependence with power factors bellow 1.0. The theoretical
results supply some valuable information for the manipulation of the quality
factor in future experimental devices based on the torsional mechanical
resonator.Comment: (accepted by EPL). New email address for Jin-Wu Jiang after
22/Nov/2011: [email protected]
A theoretical study of thermal conductivity in single-walled boron nitride nanotubes
We perform a theoretical investigation on the thermal conductivity of
single-walled boron nitride nanotubes (SWBNT) using the kinetic theory. By
fitting to the phonon spectrum of boron nitride sheet, we develop an efficient
and stable Tersoff-derived interatomic potential which is suitable for the
study of heat transport in sp2 structures. We work out the selection rules for
the three-phonon process with the help of the helical quantum numbers attributed to the symmetry group (line group) of the SWBNT. Our calculation
shows that the thermal conductivity diverges with length as
with exponentially decaying , which results from the competition between boundary scattering
and three-phonon scattering for flexure modes. We find that the two flexure
modes of the SWBNT make dominant contribution to the thermal conductivity,
because their zero frequency locates at where is
the rotational angle of the screw symmetry in SWBNT.Comment: accepted by PR
A Robust Zero-point Attraction LMS Algorithm on Near Sparse System Identification
The newly proposed norm constraint zero-point attraction Least Mean
Square algorithm (ZA-LMS) demonstrates excellent performance on exact sparse
system identification. However, ZA-LMS has less advantage against standard LMS
when the system is near sparse. Thus, in this paper, firstly the near sparse
system modeling by Generalized Gaussian Distribution is recommended, where the
sparsity is defined accordingly. Secondly, two modifications to the ZA-LMS
algorithm have been made. The norm penalty is replaced by a partial
norm in the cost function, enhancing robustness without increasing the
computational complexity. Moreover, the zero-point attraction item is weighted
by the magnitude of estimation error which adjusts the zero-point attraction
force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS
(DWZA-LMS) algorithm is further proposed, which shows better performance on
near sparse system identification. In addition, the mean square performance of
DWZA-LMS algorithm is analyzed. Finally, computer simulations demonstrate the
effectiveness of the proposed algorithm and verify the result of theoretical
analysis.Comment: 20 pages, 11 figure
Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators?
Molecular dynamics simulations are performed to investigate edge effects on
the quality factor of graphene nanoresonators with different edge
configurations and of various sizes. If the periodic boundary condition is
applied, very high quality factors () are obtained for all kinds
of graphene nanoresonators. However, if the free boundary condition is applied,
quality factors will be greatly reduced by two effects resulting from free
edges: the imaginary edge vibration effect and the artificial effect. Imaginary
edge vibrations will flip between a pair of doubly degenerate warping states
during the mechanical oscillation of nanoresonators. The flipping process
breaks the coherence of the mechanical oscillation of the nanoresonator, which
is the dominant mechanism for extremely low quality factors. There is an
artificial effect if the mechanical oscillation of the graphene nanoresonator
is actuated according to an artificial vibration (non-natural vibration of the
system), which slightly reduce the quality factor. The artificial effect can be
eliminated by actuating the mechanical oscillation according to a natural
vibration of the nanoresonator. Our simulations provide an explanation for the
recent experiment, where the measured quality factor is low and varies between
identical samples with free edges.Comment: accepted by J. Appl. Phy
- …