32 research outputs found

    1D-confined crystallization routes for tungsten phosphides

    Full text link
    Topological materials confined in one-dimension (1D) can transform computing technologies, such as 1D topological semimetals for nanoscale interconnects and 1D topological superconductors for fault-tolerant quantum computing. As such, understanding crystallization of 1D-confined topological materials is critical. Here, we demonstrate 1D-confined crystallization routes during template-assisted nanowire synthesis where we observe diameter-dependent phase selectivity for topological metal tungsten phosphides. A phase bifurcation occurs to produce tungsten monophosphide and tungsten diphosphide at the cross-over nanowire diameter of ~ 35 nm. Four-dimensional scanning transmission electron microscopy was used to identify the two phases and to map crystallographic orientations of grains at a few nm resolution. The 1D-confined phase selectivity is attributed to the minimization of the total surface energy, which depends on the nanowire diameter and chemical potentials of precursors. Theoretical calculations were carried out to construct the diameter-dependent phase diagram, which agrees with experimental observations. Our find-ings suggest a new crystallization route to stabilize topological materials confined in 1D.Comment: 5 figure

    Topological Metal MoP Nanowire for Interconnect

    Full text link
    The increasing resistance of Cu interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7-nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries of the interconnects at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising material candidates to potentially replace current Cu interconnects as low-resistance interconnects. Here, we report the attractive resistivity scaling of topological metal MoP nanowires and show that the resistivity values are comparable to those of Cu interconnects below 500 nm2^2 cross-section areas. More importantly, we demonstrate that the dimensional scaling of MoP nanowires, in terms of line resistance versus total cross-sectional area, is superior to those of effective Cu and barrier-less Ru interconnects, suggesting MoP is an attractive solution to the current scaling challenge of Cu interconnects.Comment: 4 figure

    Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth

    Get PDF
    We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.11Ysciescopu

    Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    Get PDF
    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.open115850sciescopu

    Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction

    No full text
    1

    반 데르 발스 이종 구조의 웨이퍼 규모 직성장

    No full text
    2

    Plasmon-induced Hot Electron Reponse by Au Nanostructures on Monolayer TMDCs

    No full text
    1

    Polymorphism in 2D Transition-Metal Chalcogenides

    No full text
    1
    corecore