3,413 research outputs found
Determination of Arsenic, Mercury and Barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry
A dynamic ultrasound-assisted extraction method using Atomic Absorption and Atomic Flourescence spectrometers as detectors was developed to analyse mercury, arsenic and barium from herbarium mount paper originating from the herbarium collection of the National Museum of Wales. The variables influencing extraction were optimised by a multivariate approach. The optimal conditions were found to be 1% HNO3 extractant solution used at a flow rate of 1 mL min-1. The duty cycle and amplitude of the ultrasonic probe was found to be 50% in both cases with an ultrasound power of 400 W. The optimal distance between the probe and the top face of the extraction chamber was found to be 0 cm. Under these conditions the time required for complete extraction of the three analytes was 25 min. Cold vapour and hydride generation coupled to atomic fluorescence spectrometry was utilized to determine mercury and arsenic, respectively. The chemical and instrumental conditions were optimized to provide detection limits of 0.01ng g-1 and 1.25 ng g-1 for mercury and arsenic, respectively. Barium was determined by graphite-furnace atomic absorption spectrometry, with a detection limit of 25 ng g-1. By using 0.5 g of sample, the concentrations of the target analytes varied for the different types of paper and ranged between 0.4–2.55 µg g-1 for Ba, 0.035–10.47 µg g-1 for As and 0.0046–2.37 µg g-1 for Hg
Estimación de estado e incertidumbre en un CSTR mediante Observador Asintótico y modos deslizantes de alto orden
En este artículo se propone una estructura de estimación de estado para un Reactor de Tanque Agitado en Continuo (CSTR), mediante un Observador Asintótico, conjuntamente con un estimador de perturbaciones basado en un algoritmo de modos deslizantes de alto orden, tipo Super Twisting Generalizado. El esquema de estimación propuesto permite la reconstrucción asintótica de la concentración en el reactor, con base en la medición de la temperatura al interior del mismo y de la chaqueta, en la presencia de cambios en el coeficiente global de intercambio de calor UA, la constante de frecuencia k_0 de la ecuación de Arrhenius y la energía de activación E. Adicionalmente, la estructura es capaz de estimar UA y el término k_0 e^(-E/RT) de la cinética. Las propiedades del esquema propuesto se demuestran matemáticamente y a través de simulaciones.Universidad Nacional de ColombiaCinvesta
Extending ballistic graphene FET lumped element models to diffusive devices
In this work, a modified, lumped element graphene field effect device model
is presented. The model is based on the "Top-of-the-barrier" approach which is
usually valid only for ballistic graphene nanotransistors. Proper modifications
are introduced to extend the model's validity so that it accurately describes
both ballistic and diffusive graphene devices. The model is compared to data
already presented in the literature. It is shown that a good agreement is
obtained for both nano-sized and large area graphene based channels. Accurate
prediction of drain current and transconductance for both cases is obtained
The 1989 and 2015 outbursts of V404 Cygni: a global study of wind-related optical features
The black hole transient V404 Cygni exhibited a bright outburst in June 2015
that was intensively followed over a wide range of wavelengths. Our team
obtained high time resolution optical spectroscopy (~90 s), which included a
detailed coverage of the most active phase of the event. We present a database
consisting of 651 optical spectra obtained during this event, that we combine
with 58 spectra gathered during the fainter December 2015 sequel outburst, as
well as with 57 spectra from the 1989 event. We previously reported the
discovery of wind-related features (P-Cygni and broad-wing line profiles)
during both 2015 outbursts. Here, we build diagnostic diagrams that enable us
to study the evolution of typical emission line parameters, such as line fluxes
and equivalent widths, and develop a technique to systematically detect outflow
signatures. We find that these are present throughout the outburst, even at
very low optical fluxes, and that both types of outflow features are observed
simultaneously in some spectra, confirming the idea of a common origin. We also
show that the nebular phases depict loop patterns in many diagnostic diagrams,
while P-Cygni profiles are highly variable on time-scales of minutes. The
comparison between the three outbursts reveals that the spectra obtained during
June and December 2015 share many similarities, while those from 1989 exhibit
narrower emission lines and lower wind terminal velocities. The diagnostic
diagrams presented in this work have been produced using standard measurement
techniques and thus may be applied to other active low-mass X-ray binaries.Comment: Accepted for publication in MNRAS. 23 pages paper, plus a 9 pages
appendix with extra tables and figures. 18 figures are included in the paper
and 8 in the appendi
Generally covariant state-dependent diffusion
Statistical invariance of Wiener increments under SO(n) rotations provides a
notion of gauge transformation of state-dependent Brownian motion. We show that
the stochastic dynamics of non gauge-invariant systems is not unambiguously
defined. They typically do not relax to equilibrium steady states even in the
absence of extenal forces. Assuming both coordinate covariance and gauge
invariance, we derive a second-order Langevin equation with state-dependent
diffusion matrix and vanishing environmental forces. It differs from previous
proposals but nevertheless entails the Einstein relation, a Maxwellian
conditional steady state for the velocities, and the equipartition theorem. The
over-damping limit leads to a stochastic differential equation in state space
that cannot be interpreted as a pure differential (Ito, Stratonovich or else).
At odds with the latter interpretations, the corresponding Fokker-Planck
equation admits an equilibrium steady state; a detailed comparison with other
theories of state-dependent diffusion is carried out. We propose this as a
theory of diffusion in a heat bath with varying temperature. Besides
equilibrium, a crucial experimental signature is the non-uniform steady spatial
distribution.Comment: 24 page
Characterizing normal crossing hypersurfaces
The objective of this article is to give an effective algebraic
characterization of normal crossing hypersurfaces in complex manifolds. It is
shown that a hypersurface has normal crossings if and only if it is a free
divisor, has a radical Jacobian ideal and a smooth normalization. Using K.
Saito's theory of free divisors, also a characterization in terms of
logarithmic differential forms and vector fields is found and and finally
another one in terms of the logarithmic residue using recent results of M.
Granger and M. Schulze.Comment: v2: typos fixed, final version to appear in Math. Ann.; 24 pages, 2
figure
Defining the roughness sublayer and its turbulent statistics
The roughness sublayer in a turbulent openchannel flow over a very rough wall is investigated experimentally both within the canopy and above using particle image velocimetry by gaining complete optical access with new methodologies without disturbing the flow. This enabled reliable estimates of the double-averaged mean and turbulence profiles to be obtained by minimizing and quantifying the usual errors introduced by limited temporal and spatial sampling. It is shown, for example, that poor spatial sampling can lead to erroneous vertical profiles in the roughness sublayer. Then, in order to better define and determine the roughness sublayer height, a methodology based on the measured spatial dispersion is proposed which takes into account temporal sampling errors. The results reveal values well below the usual more ad hoc estimates for all statistics. Finally, the doubleaveraged mean and turbulence statistics in the roughness sublayer are discussed
Partial mass concentration for fast-diffusions with non-local aggregation terms
We study well-posedness and long-time behaviour of aggregation-diffusion
equations of the form in the fast-diffusion
range, , and and regular enough. We develop a well-posedness
theory, first in the ball and then in , and characterise the
long-time asymptotics in the space for radial initial data. In the
radial setting and for the mass equation, viscosity solutions are used to prove
partial mass concentration asymptotically as , i.e. the limit as
is of the form with
and . Finally, we give instances of showing that partial mass concentration does happen in infinite time,
i.e.
Updating known distribution models for forecasting climate change impact on endangered species
To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their
distributional response to climate change, especially under the current situation of rapid change. However, these
predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard
of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of
known species distribution models, but proceeding to update them with the variables yielded by climatic models before
projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered
Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to
a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that
the main threat for this endangered species would not be climate change, since all forecasting models show that its
distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of
linking conservation biology with distribution modelling by updating existing models, frequently available for endangered
species, considering all the known factors conditioning the species’ distribution, instead of building new models that are
based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS
- …
