27 research outputs found

    Spray-assisted polyelectrolyte multilayer buildup: from step-by-step to single-step polyelectrolyte film constructions.

    Get PDF
    The alternate deposition of polyanions and polycations on a solid substrate leads to the formation of nanometer to micrometer films called Polyelectrolyte Multilayers. This step-by-step construction of organic films constitutes a method of choice to functionalize surfaces with applications ranging from optical to bioactive coatings. The method was originally developed by dipping the substrate in the different polyelectrolyte solutions. Recent advances show that spraying the polyelectrolyte solutions onto the substrate represents an appealing alternative to dipping because it is much faster and easier to adapt at an industrial level. Multilayer deposition by spraying is thus greatly gaining in interest. Here we review the current literature on this deposition method. After a brief history of polyelectrolyte multilayers to place the spraying method in its context, we review the fundamental issues that have been addresses so far. We then give an overview the different fields where the method has been applied.journal articlereview2012 Feb 212012 01 26importe

    Polysaccharide films built by simultaneous or alternate spray: a rapid way to engineer biomaterial surfaces.

    Get PDF
    We investigated polysaccharide films obtained by simultaneous and alternate spraying of a chitosan (CHI) solution as polycation and hyaluronic acid (HA), alginate (ALG), and chondroitin sulfate (CS) solutions as polyanions. For simultaneous spraying, the film thickness increases linearly with the cumulative spraying time and passes through a maximum for polyanion/CHI molar charge ratios lying between 0.6 and 1.2. The size of polyanion/CHI complexes formed in solution was compared with the simultaneously sprayed film growth rate as a function of the polyanion/CHI molar charge ratio. A good correlation was found. This suggests the importance of polyanion/polycation complexation in the simultaneous spraying process. Depending on the system, the film topography is either liquid-like or granular. Film biocompatibility was evaluated using human gingival fibroblasts. A small or no difference is observed in cell viability and adhesion between the two deposition processes. The CHI/HA system appears to be the best for cell adhesion inducing the clustering of CD44, a cell surface HA receptor, at the membrane of cells. Simultaneous or alternate spraying of CHI/HA appears thus to be a convenient and fast procedure for biomaterial surface modifications.journal articleresearch support, non-u.s. gov't2012 Jun 052012 05 23importe

    Bioaffinity sensor based on nanoarchitectonic films: control of the specific adsorption of proteins through the dual role of an ethylene oxide spacer.

    Get PDF
    The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins. We choose ovalbumin as an example. Thanks to the versatility of PEM films, the platform was built on two types of sensor surface and was evaluated using both optical- and viscoelastic-based techniques, namely, optical waveguide lightmode spectroscopy and the quartz crystal microbalance, respectively. A library of biotinylated poly(acrylic acids) (PAAs) was synthesized by grafting biotin moieties at different grafting ratios (GR). The biotin moieties were linked to the PAA chains through ethylene oxide (EO) spacers of different lengths. The adsorption of the PAA-EOn-biotin (GR) layer on a PEM precursor film allows tuning the surface density in biotin and thus the streptavidin adsorption mainly through the grafting ratio. The nonspecific adsorption of serum was reduced and even suppressed depending on the length of the EO arms. We showed that to obtain an antifouling polyelectrolyte the grafting of EO9 or EO19 chains at 25% in GR is sufficient. Thus, the spacer has a dual role: ensuring the antifouling property and allowing the accessibility of biotin moieties. Finally, an optimized platform based on the PAA-EO9-biotin (25%)/streptavidin/biotinylated-antibody architecture was built and demonstrated promising performance as interface architecture for bioaffinity sensing of a targeted protein, in our case, ovalbumin.journal articleresearch support, non-u.s. gov't2013 Jun 182013 02 11importe

    Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes

    Get PDF
    Novel biochemically active compact polyelectrolyte complexes (CoPECs) are obtained through a simple coprecipitation and compaction procedure. As shown for the system composed of poly(acrylic acid) (PAA) and poly(allylamine) (PAH) as polyelectrolytes and alkaline phosphatase (ALP) as enzyme, the enzyme can be firmly immobilized into these materials. The ALP not only remains active in these materials, but the matrix also enhances the specific activity of the enzyme while protecting it from deactivation at higher temperature. The presence of the matrix allows fine control and substantial enhancement of reaction rates by varying the salt concentration of the contacting solution or temperature. The excellent reusability, together with the ease of co-immobilizing other useful components, such as magnetic particles, allowing facile handling of the CoPECs, makes these materials interesting candidates for variable scaffolds for the immobilization of enzymes for small- and large-scale enzyme-catalyzed processes

    Polymer multilayer films obtained by electrochemically catalyzed click chemistry.

    Get PDF
    We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.journal articleresearch support, non-u.s. gov't2010 Feb 16importe

    Cyto-mechanoresponsive polyelectrolyte multilayer films.

    Get PDF
    Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.journal articleresearch support, non-u.s. gov't2012 Jan 112011 12 20importe

    Surface confined self-assembly of polyampholytes generated from charge-shifting polymers

    Get PDF
    International audiencePolyampholyte-based films can be efficiently self-assembled onto a surface in a one-pot manner. By using a gradient of protons, morphogens, generated at an electrode surface, a charge-shifting polyelectrolyte present in solution can be transformed into a polyampholyte, leading to the continuous buildup of a film based on polyelectrolyte complexation
    corecore