6,319 research outputs found

    On the structure of Accretion Disks with Outflows

    Full text link
    In order to study the outflows from accretion disks, we solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθϕr\theta\phi) to obtain the explicit structure along the θ\theta direction. Using self-similar assumptions in the radial direction, we change the equations to a set of ordinary differential equations (ODEs) about the θ\theta-coordinate, which are then solved with symmetrical boundary conditions in the equatorial plane, and the velocity field is obtained. The α\alpha viscosity prescription is applied and an advective factor ff is used to simplify the energy equation.The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models. However, an inflow region and an outflow region always exist, except when the viscosity parameter α\alpha is too large, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and may be stronger in slim disks, where both advection and radiation pressure are dominant. We also present the structure dependence on the input parameters and discuss their physical meanings. The caveats of this work and possible improvements in the future are discussed.Comment: 24 pages, 20 figures. Accepted for publication in Ap

    Efficient spin-current injection in single-molecule magnet junctions

    Full text link
    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.Comment: 4 figure

    A BAC-NOMA Design for 6 G umMTC With Hybrid SIC: Convex Optimization or Learning-Based?

    Get PDF
    This paper presents a new backscattering communication (BackCom)-assisted non-orthogonal multiple access (BAC-NOMA) transmission scheme for device-to-device (D2D) communications. This scheme facilitates energy and spectrum cooperation between BackCom devices and cellular downlink users in 6 G ultra-massive machine -type communications (umMTC) scenarios. Given its quasi-uplink nature, the hybrid successive interference cancellation (SIC) is applied to further improve performance. The data rate of BackCom devices with high quality of service (QoS) requirements is maximized by jointly optimizing backscatter coefficients and the beamforming vector. The use of hybrid SIC and BackCom yields two non-concave sub-problems involving transcendental functions. To address this problem, this paper designs and compares convex optimization-based and unsupervised deep learning-based algorithms. In the convex optimization, the closed-form backscatter coefficients of the first sub-problem are obtained, and then semi-definite relaxation (SDR) is utilized to design the beamforming vector. On the other hand, the second sub-problem is approximated by using a combination of sequential convex approximation (SCA) and SDR. For unsupervised deep learning-based optimization, a loss function is properly designed to satisfy constraints. Computer simulations show the following instructive results: i) the superiority of the hybrid SIC strategy; ii) the distinct sensitivities and efficacies of these two algorithms in response to varying parameters; iii) the superior robustness of the unsupervised deep learning-based optimization
    • …
    corecore