6,319 research outputs found
On the structure of Accretion Disks with Outflows
In order to study the outflows from accretion disks, we solve the set of
hydrodynamic equations for accretion disks in the spherical coordinates
() to obtain the explicit structure along the direction.
Using self-similar assumptions in the radial direction, we change the equations
to a set of ordinary differential equations (ODEs) about the
-coordinate, which are then solved with symmetrical boundary conditions
in the equatorial plane, and the velocity field is obtained. The
viscosity prescription is applied and an advective factor is used to
simplify the energy equation.The results display thinner, quasi-Keplerian disks
for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection
Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with
previous popular analytical models. However, an inflow region and an outflow
region always exist, except when the viscosity parameter is too large,
which supports the results of some recent numerical simulation works. Our
results indicate that the outflows should be common in various accretion disks
and may be stronger in slim disks, where both advection and radiation pressure
are dominant. We also present the structure dependence on the input parameters
and discuss their physical meanings. The caveats of this work and possible
improvements in the future are discussed.Comment: 24 pages, 20 figures. Accepted for publication in Ap
Efficient spin-current injection in single-molecule magnet junctions
We study theoretically spin transport through a single-molecule magnet (SMM)
in the sequential and cotunneling regimes, where the SMM is weakly coupled to
one ferromagnetic and one normalmetallic leads. By a master-equation approach,
it is found that the spin polarization injected from the ferromagnetic lead is
amplified and highly polarized spin-current can be generated, due to the
exchange coupling between the transport electron and the anisotropic spin of
the SMM. Moreover, the spin-current polarization can be tuned by the gate or
bias voltage, and thus an efficient spin injection device based on the SMM is
proposed in molecular spintronics.Comment: 4 figure
A BAC-NOMA Design for 6Â G umMTC With Hybrid SIC: Convex Optimization or Learning-Based?
This paper presents a new backscattering communication (BackCom)-assisted non-orthogonal multiple access (BAC-NOMA) transmission scheme for device-to-device (D2D) communications. This scheme facilitates energy and spectrum cooperation between BackCom devices and cellular downlink users in 6Â G ultra-massive machine -type communications (umMTC) scenarios. Given its quasi-uplink nature, the hybrid successive interference cancellation (SIC) is applied to further improve performance. The data rate of BackCom devices with high quality of service (QoS) requirements is maximized by jointly optimizing backscatter coefficients and the beamforming vector. The use of hybrid SIC and BackCom yields two non-concave sub-problems involving transcendental functions. To address this problem, this paper designs and compares convex optimization-based and unsupervised deep learning-based algorithms. In the convex optimization, the closed-form backscatter coefficients of the first sub-problem are obtained, and then semi-definite relaxation (SDR) is utilized to design the beamforming vector. On the other hand, the second sub-problem is approximated by using a combination of sequential convex approximation (SCA) and SDR. For unsupervised deep learning-based optimization, a loss function is properly designed to satisfy constraints. Computer simulations show the following instructive results: i) the superiority of the hybrid SIC strategy; ii) the distinct sensitivities and efficacies of these two algorithms in response to varying parameters; iii) the superior robustness of the unsupervised deep learning-based optimization
- …