7,785 research outputs found

    Searching for high-KK isomers in the proton-rich A∼80A\sim80 mass region

    Get PDF
    Configuration-constrained potential-energy-surface calculations have been performed to investigate the KK isomerism in the proton-rich A∼80A\sim80 mass region. An abundance of high-KK states are predicted. These high-KK states arise from two and four-quasi-particle excitations, with Kπ=8+K^{\pi}=8^{+} and Kπ=16+K^{\pi}=16^{+}, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under studies are prolate spheroids in their ground states, the oblate shapes of the predicted high-KK states may indicate a combination of KK isomerism and shape isomerism

    Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications

    Full text link
    In the first part of this series of two papers, we proposed a theoretical formalism that enables one to model and categorize heterogeneous materials (media) via two-point correlation functions S2 and introduced an efficient heterogeneous-medium (re)construction algorithm called the "lattice-point" algorithm. Here we discuss the algorithmic details of the lattice-point procedure and an algorithm modification using surface optimization to further speed up the (re)construction process. The importance of the error tolerance, which indicates to what accuracy the media are (re)constructed, is also emphasized and discussed. We apply the algorithm to generate three-dimensional digitized realizations of a Fontainebleau sandstone and a boron carbide/aluminum composite from the two- dimensional tomographic images of their slices through the materials. To ascertain whether the information contained in S2 is sufficient to capture the salient structural features, we compute the two-point cluster functions of the media, which are superior signatures of the micro-structure because they incorporate the connectedness information. We also study the reconstruction of a binary laser-speckle pattern in two dimensions, in which the algorithm fails to reproduce the pattern accurately. We conclude that in general reconstructions using S2 only work well for heterogeneous materials with single-scale structures. However, two-point information via S2 is not sufficient to accurately model multi-scale media. Moreover, we construct realizations of hypothetical materials with desired structural characteristics obtained by manipulating their two-point correlation functions.Comment: 35 pages, 19 figure

    Upper critical field and thermally activated flux flow in single crystalline Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2 single crystals has been determined by means of measuring the electrical resistivity in both a pulsed magnetic field (∼\sim60T) and a DC magnetic field (∼\sim14T). It is found that Hc2H_{c2} linearly increases with decreasing temperature for H\textbf{H}∥\parallelcc, reaching μ0Hc2H∥c(0K)≃60\mu_0H_{c2}^{\textbf{H}\parallel c}(0\textrm{K})\simeq60 T. On the other hand, a larger μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) with a strong convex curvature is observed for H\textbf{H}⊥\perpcc (μ0Hc2H⊥c\mu_0H_{c2}^{\textbf{H}\perp c}(18K)≃\simeq60T). This compound shows a moderate anisotropy of the upper critical field around TcT_c, but decreases with decreasing temperature. Analysis of the upper critical field based on the Werthamer-Helfand-Hohenberg (WHH) method indicates that μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) is orbitally limited for H\textbf{H}∥\parallelcc, but the effect of spin paramagnetism may play an important role on the pair breaking for H\textbf{H}⊥\perpcc. All these experimental observations remarkably resemble those of the iron pnictide superconductors, suggesting a unified scenario for the iron-based superconductors. Moreover, the superconducting transition is significantly broadened upon applying a magnetic field, indicating strong thermal fluctuation effects in the superconducting state of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2. The derived thermal activation energy for vortex motion is compatible with those of the 1111-type iron pnictides.Comment: 7 pages, 6 figure
    • …
    corecore