4 research outputs found

    Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics

    Get PDF
    PurposeThis study aimed to investigate the value of a machine learning-based magnetic resonance imaging (MRI) radiomics model in predicting the risk of recurrence within 1 year following an acute ischemic stroke (AIS).MethodsThe MRI and clinical data of 612 patients diagnosed with AIS at the Second Affiliated Hospital of Nanchang University from March 1, 2019, to March 5, 2021, were obtained. The patients were divided into recurrence and non-recurrence groups according to whether they had a recurrent stroke within 1 year after discharge. Randomized splitting was used to divide the data into training and validation sets using a ratio of 7:3. Two radiologists used the 3D-slicer software to label the lesions on brain diffusion-weighted (DWI) MRI sequences. Radiomics features were extracted from the annotated images using the pyradiomics software package, and the features were filtered using the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Four machine learning algorithms, logistic regression (LR), Support Vector Classification (SVC), LightGBM, and Random forest (RF), were used to construct a recurrence prediction model. For each algorithm, three models were constructed based on the MRI radiomics features, clinical features, and combined MRI radiomics and clinical features. The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were used to compare the predictive efficacy of the models.ResultsTwenty features were selected from 1,037 radiomics features extracted from DWI images. The LightGBM model based on data with three different features achieved the best prediction accuracy from all 4 models in the validation set. The LightGBM model based solely on radiomics features achieved a sensitivity, specificity, and AUC of 0.65, 0.671, and 0.647, respectively, and the model based on clinical data achieved a sensitivity, specificity, and AUC of 0.7, 0.799, 0.735, respectively. The sensitivity, specificity, and AUC of the LightGBM model base on both radiomics and clinical features achieved the best performance with a sensitivity, specificity, and AUC of 0.85, 0.805, 0.789, respectively.ConclusionThe ischemic stroke recurrence prediction model based on LightGBM achieved the best prediction of recurrence within 1 year following an AIS. The combination of MRI radiomics features and clinical data improved the prediction performance of the model

    Dynamic Online learning Algorithm For Three-way decision

    No full text
    Three-way decision is an important theory for solving uncertain problems. Online computing is a new dynamic Stream computing form. How to execute three-way decision quickly in online computing is a challenging topic. In this paper, Online computing process is divided into incremental computing portion and decreasing computing portion. And a three-way decision dynamic incremental and decreasing learning algorithm for online computing is proposed. Firstly, the dynamic incremental and decreasing learning models is studied for stream computing based on probabilistic rough set . Then, the logical reasoning for three-way decision regions changing are discussed based on the dynamic incremental and decreasing learning models. And a novel dynamic online learning algorithm for three-way decision online computing is proposed based on the above theory. Finally, the experiment by UCI data set show that the proposed algorithms are superior than classical static three-way decision method in time efficiency

    Prediction of recurrent ischaemic stroke using radiomics data and machine learning methods in patients with acute ischaemic stroke: protocol for a multicentre, large sample, prospective observational cohort study in China

    No full text
    Introduction Stroke is a leading cause of mortality and disability worldwide. Recurrent strokes result in prolonged hospitalisation and worsened functional outcomes compared with the initial stroke. Thus, it is critical to identify patients who are at high risk of stroke recurrence. This study is positioned to develop and validate a prediction model using radiomics data and machine learning methods to identify the risk of stroke recurrence in patients with acute ischaemic stroke (AIS).Methods and analysis A total of 1957 patients with AIS will be needed. Enrolment at participating hospitals will continue until the required sample size is reached, and we will recruit as many participants as possible. Multiple indicators including basic clinical data, image data, laboratory data, CYP2C19 genotype and follow-up data will be assessed at various time points during the registry, including baseline, 24 hours, 7 days, 1 month, 3 months, 6 months, 9 months and 12 months. The primary outcome was stroke recurrence. The secondary outcomes were death events, prognosis scores and adverse events. Imaging images were processed using deep learning algorithms to construct a programme capable of automatically labelling the lesion area and extracting radiomics features. The machine learning algorithms will be applied to integrate cross-scale, multidimensional data for exploratory analysis. Then, an ischaemic stroke recurrence prediction model of the best performance for patients with AIS will be established. Calibration, receiver operating characteristic and decision curve analyses will be evaluated.Ethics and dissemination This study has received ethical approval from the Medical Ethics Committee of the Second Affiliated Hospital of Nanchang University (medical research review No.34/2021), and informed consent will be obtained voluntarily. The research findings will be disseminated through publication in journals and presented at conferences.Trial registration number ChiCTR2200055209

    Feasibility of a clinical-radiomics combined model to predict the occurrence of stroke-associated pneumonia

    No full text
    Abstract Purpose To explore the predictive value of radiomics in predicting stroke-associated pneumonia (SAP) in acute ischemic stroke (AIS) patients and construct a prediction model based on clinical features and DWI-MRI radiomics features. Methods Univariate and multivariate logistic regression analyses were used to identify the independent clinical predictors for SAP. Pearson correlation analysis and the least absolute shrinkage and selection operator with ten-fold cross-validation were used to calculate the radiomics score for each feature and identify the predictive radiomics features for SAP. Multivariate logistic regression was used to combine the predictive radiomics features with the independent clinical predictors. The prediction performance of the SAP models was evaluated using receiver operating characteristics (ROC), calibration curves, decision curve analysis, and subgroup analyses. Results Triglycerides, the neutrophil-to-lymphocyte ratio, dysphagia, the National Institutes of Health Stroke Scale (NIHSS) score, and internal carotid artery stenosis were identified as clinically independent risk factors for SAP. The radiomics scores in patients with SAP were generally higher than in patients without SAP (P < 0. 05). There was a linear positive correlation between radiomics scores and NIHSS scores, as well as between radiomics scores and infarct volume. Infarct volume showed moderate performance in predicting the occurrence of SAP, with an AUC of 0.635. When compared with the other models, the combined prediction model achieved the best area under the ROC (AUC) in both training (AUC = 0.859, 95% CI 0.759–0.936) and validation (AUC = 0.830, 95% CI 0.758–0.896) cohorts (P < 0.05). The calibration curves and decision curve analysis further confirmed the clinical value of the nomogram. Subgroup analysis showed that this nomogram had potential generalization ability. Conclusion The addition of the radiomics features to the clinical model improved the prediction of SAP in AIS patients, which verified its feasibility
    corecore