40 research outputs found

    Jacobson’s lemma for the generalized Drazin inverse

    Get PDF
    Abstract0truemm0truemm We study properties of elements in a ring which admit the generalized Drazin inverse. It is shown that the element 1-ab is generalized Drazin invertible if and only if so is 1-ba and a formula for the generalized Drazin inverse of 1-ba in terms of the generalized Drazin inverse and the spectral idempotent of 1-ab is provided. Further, recent results relating to the Drazin index can be recovered from our theorems

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation

    No full text
    Chitosan was modified by gamma radiation–induced grafting with maleic acid and then used for the removal of cobalt ions from aqueous solutions. Chitosan-g-maleic acid was characterized by Fourier Transform infrared spectroscopy (FT-IR). The effect of the dose (1–5 kGy) and monomer concentration (0.3–1.3%, m/v) on the grafting ratio was examined. The adsorption kinetics and isotherms were also investigated. The results showed that the optimal dose for grafting was 2 kGy. When monomer concentration was within the range of 0.3–1.3% (m/v), the grafting ratio increased almost linearly. For the adsorption of cobalt ions by chitosan-g-maleic acid beads, the pseudo second-order kinetic model (R2 = 0.99) and Temkin isotherm model (R2 = 0.96) were able to fit the experimental data reasonably well. The equilibrium adsorption capacity of cobalt ions increased from 2.00 mg/g to 2.78 mg/g after chitosan modification

    MNCF: Prediction Method for Reliable Blockchain Services under a BaaS Environment

    No full text
    Blockchain is an innovative distributed ledger technology that is widely used to build next-generation applications without the support of a trusted third party. With the ceaseless evolution of the service-oriented computing (SOC) paradigm, Blockchain-as-a-Service (BaaS) has emerged, which facilitates development of blockchain-based applications. To develop a high-quality blockchain-based system, users must select highly reliable blockchain services (peers) that offer excellent quality-of-service (QoS). Since the vast number of blockchain services leading to sparse QoS data, selecting the optimal personalized services is challenging. Hence, we improve neural collaborative filtering and propose a QoS-based blockchain service reliability prediction algorithm under BaaS, named modified neural collaborative filtering (MNCF). In this model, we combine a neural network with matrix factorization to perform collaborative filtering for the latent feature vectors of users. Furthermore, multi-task learning for sharing different parameters is introduced to improve the performance of the model. Experiments based on a large-scale real-world dataset validate its superior performance compared to baselines

    Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method

    No full text
    Pig weight and body size are important indicators for producers. Due to the increasing scale of pig farms, it is increasingly difficult for farmers to quickly and automatically obtain pig weight and body size. Due to this problem, we focused on a multiple output regression convolutional neural network (CNN) to estimate pig weight and body size. DenseNet201, ResNet152 V2, Xception and MobileNet V2 were modified into multiple output regression CNNs and trained on modeling data. By comparing the estimated performance of each model on test data, modified Xception was selected as the optimal estimation model. Based on pig height, body shape, and contour, the mean absolute error (MAE) of the model to estimate body weight (BW), shoulder width (SW), shoulder height (SH), hip width (HW), hip width (HH), and body length (BL) were 1.16 kg, 0.33 cm, 1.23 cm, 0.38 cm, 0.66 cm, and 0.75 cm, respectively. The coefficient of determination (R2) value between the estimated and measured results was in the range of 0.9879–0.9973. Combined with the LabVIEW software development platform, this method can estimate pig weight and body size accurately, quickly, and automatically. This work contributes to the automatic management of pig farms

    Identification of a novel isolated 4q35.2 microdeletion in a Chinese pediatric patient using chromosomal microarray analysis: a case report and literature review

    No full text
    Abstract Background Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype–phenotype correlation. Methods A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family. Results During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient. Conclusions This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition

    The Microalloying Effect of Ce on the Mechanical Properties of Medium Entropy Bulk Metallic Glass Composites

    No full text
    Novel ultra-strong medium entropy bulk metallic glasses composites (BMGCs) Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and Ti40−xCexNi40Cu20 (x = 0, 1.0), through the martensite transformation induced plasticity (TRIP effect) to enhance both the ductility and work-hardening capability, were fabricated using magnetic levitation melting and copper mold suction via high frequency induction heating. Furthermore, the Ce microalloying effects on microstructure and mechanical behaviors were studied. The Fe-based BMGCs consisted of face-centered cubic (fcc) γ-Fe and body-centered cubic (bcc) α-Fe phase, as well as Ti-based BMGCs containing supercooled B2-Ti (Ni, Cu) and a thermally induced martensite phase B19’-Ti (Ni, Cu). As loading, the TRIP BMGCs exhibited work-hardening behavior, a high fracture strength, and large plasticity, which was attributed to the stress-induced transformation of ε-Fe martensite and B19’-Ti (Ni, Cu) martensite. Ce addition further improved the strengthening and toughening effects of TRIP BMGCs. Adding elemental Ce enhanced the mixing entropy ΔSmix and atomic size difference δ, while reducing the mixing enthalpy ΔHmix, thus improving the glass forming ability and delaying the phase transition process, and hence prolonging the work-hardening period before fracturing. The fracture strength σf and plastic stress εp of Ti39CeNi40Cu20 and Fe64.4CeMn14.3Si9.4Cr10C0.9 alloys were up to 2635 MPa and 13.8%, and 2905 MPa and 30.1%, respectively

    Prenatal diagnosis and molecular cytogenetic characterization of fetuses with central nervous system anomalies using chromosomal microarray analysis: a seven-year single-center retrospective study

    No full text
    Abstract Few existing reports have investigated the copy number variants (CNVs) in fetuses with central nervous system (CNS) anomalies. To gain further insights into the genotype–phenotype relationship, we conducted chromosomal microarray analysis (CMA) to reveal the pathogenic CNVs (pCNVs) that were associated with fetal CNS anomalies. We enrolled 5,460 pregnant women with different high-risk factors who had undergone CMA. Among them, 57 subjects with fetal CNS anomalies were recruited. Of the subjects with fetal CNS anomalies, 23 were given amniocentesis, which involved karyotype analysis and CMA to detect chromosomal abnormalities. The other 34 cases only underwent CMA detection using fetal abortive tissue. In this study, we identified five cases of chromosome aneuploid and nine cases of pCNVs in the fetuses, with a chromosomal aberration detection rate of 24.56% (14/57). In the 23 cases that were given both karyotype and CMA analysis, one case with trisomy 18 was detected by karyotyping. Moreover, CMA revealed a further three cases of pCNVs, including the 1p36.33p36.31, 7q11.23, and 1q21.1q21.2 microdeletions, with a 13.04% (3/23) increase in CMA yield over the karyotype analysis. Additionally, three cases of trisomy 13, one case of trisomy 21, and six cases of pCNVs were detected in the other 34 fetuses where only CMA was performed. Furthermore, a higher chromosomal aberration detection rate was observed in the extra CNS anomaly group than in the isolated CNS anomaly group (40.91% vs 14.29%). In conclude, several pathogenic CNVs were identified in the fetuses with CNS anomalies using CMA. Among the detected CNVs, ZIC2, GNB1, and NSUN5 may be the candidate genes that responsible for fetal CNS anomalies. Our findings provides an additional reference for genetic counseling regarding fetal CNS anomalies and offers further insight into the genotype–phenotype relationship

    NFMF: neural fusion matrix factorisation for QoS prediction in service selection

    No full text
    Selecting suitable web services based on the quality-of-service (QoS) is essential for developing high-quality service-oriented applications. A critical step in this direction is acquiring accurate, personalised QoS values of web services. As the number of web services is enormous and the QoS data are highly sparse, improving the accuracy of QoS prediction has become a challenging issue recently. In this study, we propose a novel QoS prediction model, called neural fusion matrix factorisation, wherein we combine neural networks and matrix factorisation to perform non-linear collaborative filtering for latent feature vectors of users and services. Moreover, we consider context bias and employ multi-task learning to reduce prediction error and improve the predicted performance. Furthermore, we conducted extensive experiments in a large-scale real-world QoS dataset, and the experimental results verify the effectiveness of our proposed method
    corecore