50 research outputs found

    Antimicrobial peptides as novel alternatives to antibiotics

    Get PDF
    In recent years, due to the unreasonable use of antibiotics, bacterial resistance has increased, posing a huge threat to human health and the healthy development of the swine industry. Therefore, it is an urgent to look for antibiotic alternatives. Antimicrobial peptides are a class of small molecule peptides, which are the body's first line of defense against the invasion of pathogenic microorganisms. They have small molecular weight, good water solubility, and not easy to produce drug resistance. Therefore, antimicrobial peptides are considered as one of the best alternatives to antibiotics. This review focuses on the mechanism of action of antimicrobial peptides, especially improve performance, improve intestinal inflammation and nutrient digestibility, regulate the intestinal microbiota and enhance the immune function of swine. Overall, AMPs have great potential for application  as an alternative to antibiotics in swine industry

    The Antimicrobial Peptide Mastoparan X Protects Against Enterohemorrhagic Escherichia coli O157:H7 Infection, Inhibits Inflammation, and Enhances the Intestinal Epithelial Barrier

    Get PDF
    Escherichia coli can cause intestinal diseases in humans and livestock, destroy the intestinal barrier, exacerbate systemic inflammation, and seriously threaten human health and animal husbandry development. The aim of this study was to investigate whether the antimicrobial peptide mastoparan X (MPX) was effective against E. coli infection. BALB/c mice infected with E. coli by intraperitoneal injection, which represents a sepsis model. In this study, MPX exhibited no toxicity in IPEC-J2 cells and notably suppressed the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) released by E. coli. In addition, MPX improved the expression of ZO-1, occludin, and claudin and enhanced the wound healing of IPEC-J2 cells. The therapeutic effect of MPX was evaluated in a murine model, revealing that it protected mice from lethal E. coli infection. Furthermore, MPX increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum. SEM and TEM analyses showed that MPX effectively ameliorated the jejunum damage caused by E. coli and increased the number and length of microvilli. In addition, MPX decreased the expression of IL-2, IL-6, TNF-α, p-p38, and p-p65 in the jejunum and colon. Moreover, MPX increased the expression of ZO-1, occludin, and MUC2 in the jejunum and colon, improved the function of the intestinal barrier, and promoted the absorption of nutrients. This study suggests that MPX is an effective therapeutic agent for E. coli infection and other intestinal diseases, laying the foundation for the development of new drugs for bacterial infections

    Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bupleurum chinense </it>DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of <it>B. chinense</it>, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway.</p> <p>Results</p> <p>One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A <it>de novo </it>assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the <it>Bupleurum </it>genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel <it>Bupleurum </it>genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (<it>P450</it>s) and 102 glycosyltransferases (<it>GT</it>s) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 <it>P450</it>s and 7 uridine diphosphate <it>GT</it>s (<it>UGT</it>s) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two <it>P450</it>s and three <it>UGT</it>s were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with <it>β-AS </it>in methyl jasmonate-treated adventitious roots and on their similar expression patterns with <it>β-AS </it>in various <it>B. chinense </it>tissues.</p> <p>Conclusions</p> <p>A collection of high-quality ESTs for <it>B. chinense </it>obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of <it>B. chinense </it>and other <it>Bupleurum </it>species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the <it>P450</it>s and <it>UGT</it>s, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins.</p

    Simultaneous Analysis of Iridoid Glycosides and Anthraquinones in Morinda officinalis Using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE

    No full text
    Morinda officinalis is an important herbal medicine and functional food, and its main constituents include anthraquinone and iridoid glycosides. Quantification of the main compounds is a necessary step to understand the quality and therapeutic properties of M. officinalis, but this has not yet been performed based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). Analytes were extracted from M. officinalis by reflux method. Ultrahigh-performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UPLC-QqQ-MS) using multiple reaction monitoring (MRM) mode was applied for quantification. Fragmentation pathways of deacetyl asperulosidic acid and rubiadin were investigated based on UPLC with quadrupole time-of-flight tandem mass spectrometry (Q/TOF-MS) in the MSE centroid mode. The method showed a good linearity over a wide concentration range (R2 &ge; 0.9930). The limits of quantification of six compounds ranged from 2.6 to 27.57 ng/mL. The intra- and inter-day precisions of the investigated components exhibited an RSD within 4.5% with mean recovery rates of 95.32&ndash;99.86%. Contents of selected compounds in M. officinalis varied significantly depending on region. The fragmentation pathway of deacetyl asperulosidic and rubiadin was proposed. A selective and sensitive method was developed for determining six target compounds in M. officinalis by UPLC-MS/MS. Furthermore, the proposed method will be helpful for quality control and identification main compounds of M. officinalis

    Role of TLR4-Mediated PI3K/AKT/GSK-3β Signaling Pathway in Apoptosis of Rat Hepatocytes

    No full text
    We investigated the mechanism of the Toll-like receptor 4- (TLR4-) mediated PI3K/AKT/GSK-3β signaling pathway in rat hepatocytes apoptosis induced by LPS. The cultured rat hepatocytes were treated with LPS alone or first pretreated with TLR4 inhibitor, AKT inhibitor, and GSK-3β inhibitor, respectively, and then stimulated with the same dose of LPS. Cell viability, cell apoptotic rate, and apoptosis morphology were assessed; the level of P-AKTSer473, P-GSK-3βSer9, and active Caspase-3 and the ratio of Bax/Bcl-2 were evaluated. The results indicated that cell viability decreased, while cell apoptotic rate increased with time after LPS stimulation. The expression of P-AKTSer473 and P-GSK-3βSer9 in the LPS group decreased compared with the control, while the level of active Caspase-3 and the ratio of Bax/Bcl-2 were significantly increased. These effects were attenuated by pretreatment with CLI-095. In addition, the apoptotic ratio decreased after pretreatment with LiCl but increased following pretreatment with LY294002. The expression of P-AKTSer473 further decreased following pretreatment with LY294002 and the expression of P-GSK-3βSer9 increased following pretreatment with LiCl. Moreover, pretreatment with CLI-095 weakened LPS-induced nuclear translocation of GSK-3β. Our findings suggest that the TLR4-mediated PI3K/AKT/GSK-3β signaling pathway is present in rat hepatocytes and participates in apoptosis of BRL-3A cells

    The effect of oral administration of the antibacterial peptide MPX on intestinal inflammation of mice in experimental infection with escherichia coli strain O157: H7

    No full text
    Escherichia coli is a gram-negative bacterium, an intestinal pathogen that can cause intestinal inflammation. Antimicrobial peptides are a class of small molecule peptides, which has good antibacterial activity against a variety of gram-positive and negative bacteria. In this regard, the authors aimed to study the effect of the antimicrobial peptide MPX, which was administered orally, on the intestinal wall of mice infected with the intestinal barrier function, which were infected with E. coli. Synthesis and purification of the antimicrobial peptide MPX (H-INWKGIAAMAKKLL-NH2) was performed by Jier Sheng Hua (Shanghai, China). Mass spectrometry and liquid chromatography (HPLC) were used for this purpose. Escherichia Coli (O157: H7 ATCC43889) was isolated from human faeces in which haemolytic uremic syndrome was reported. Solid LB agar (Solarbio, China) was used to isolate enterohemorrhagic E. coli. The culture was obtained from the Chinese Institute of Veterinary Drug Control (Beijing, China). The results of necropsy found that using of an orally administered MPX could alleviate the damage of E. coli to the liver, spleen, and the lungs were less affected. According to H&E results in case of an orally administered MPX group considerably relieved duodenum and organs on day 7 and day 28. qRT-PCR results showed orally administered MPX could reduce the inflammation-related factors in the mRNA expression of IL-2 and IL-6 and TNF-α on day 7 and day 28. In addition, orally administered MPX could significantly increase them RNA expression of tight junction proteins Occludin and Zo-1 on day 7 and day 28. The results of immune histochemistry further showed that an orally administered MPX could increase the mRNA expression of MUC2 in jejunum. The above results showed that orally administered MPX could alleviate the attack of E. coli on the intestinal tract of mice, relieve intestinal inflammation, and improve the intestinal barrier function. This study lays a theoretical foundation for adding antimicrobial peptides to food. In orally administered MPX authors can see reducing the mRNA expression of inflammation-related factors, thereby alleviating the intestinal inflammation caused by E. coli infection in mice. Authors can add that orally administered MPX shows an increase in mRNA expression of tight junction protein in intestines and improves the intestinal barrier function. This study lays the foundation for adding antimicrobial peptides to food to relieve inflammation and improve barrier function in clinical practice

    Evaluation of Design Parameters for Daylighting Performance in Secondary School Classrooms Based on Field Measurements and Physical Simulations: A Case Study of Secondary School Classrooms in Guangzhou

    No full text
    The quality of natural lighting within secondary school classrooms can significantly affect the physical and mental well-being of both teachers and students. While numerous studies have explored various aspects of daylighting performance and its related factors, there is no universal standard for predicting and optimizing daylighting performance from a design perspective. In this study, a method was developed that combines measurements and simulations to enhance the design parameters associated with daylighting performance. This approach facilitates the determination of precise ranges for multiple design parameters and allows for the efficient attainment of optimal daylighting performance. Daylight glare probability (DGP), point-in-time illuminance (PIT), daylight factor (DF), and lighting energy consumption were simulated based on existing control parameters of operational classrooms. The simulation results were then validated using field measurements. Genetic algorithms (GAs) were employed to optimize the control parameters, yielding a set of optimal solutions for improving daylight performance. The differences between daylighting performance indicators corresponding to the optimal solution set and those of the basic model were compared to test the performance of the optimized parameters. The proposed method is a robust process for optimizing daylight design parameters based on GAs, which not only enhances daylighting performance but also offers scientifically grounded guidelines for the design phase. It is a valuable framework for creating healthier and more productive educational environments within secondary school classrooms

    Sulfate Resistance of Recycled Aggregate Concrete with GGBS and Fly Ash-Based Geopolymer

    No full text
    There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&amp;D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&amp;D wastes

    Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics

    No full text
    The molecular dynamics method was used to study the removal mechanism of boron nitride particles by multi-angle microcutting of single-crystal copper from the microscopic point of view. The mechanical properties and energy conversion characteristics of single-crystal copper during microcutting were analyzed and the atomic displacement and dislocation formation in the microcutting process are discussed. The research results showed that during the energy transfer between atoms during the microcutting process of boron nitride particles, the crystal lattice of the single-crystal copper atom in the cutting extrusion region was deformed and displaced, the atomic temperature and thermal motion in the contact area between boron nitride particles and Newtonian layer of workpiece increased, the single-crystal copper atom lattice was defective, and the atomic arrangement structure was destroyed and recombined. The interface of different crystal structures formed a dislocation structure and produced plastic deformation. With the increase of the impact cutting angle, the dislocation density inside the crystal increased, the defect structure increased and the surface quality of the workpiece decreased. To protect the internal structure of the workpiece and improve the material removal rate, a smaller cutting angle should be selected for the abrasive flow microcutting function, which can reduce the formation of an internal defect structure and effectively improve the quality of abrasive flow precision machining. The research conclusions can provide a theoretical basis and technical support for the development of precision abrasive flow processing technology
    corecore